P2015
1 #include<iostream>
2 #include<cstdio>
3 #include<algorithm>
4 #include<cstring>
5 using namespace std;
6 const int maxn=200;
7 struct edge{
8 int to,nxt,dis;
9 }e[maxn];
10 int n,m;
11 inline int read()
12 {
13 int x;char c=getchar();
14 while(c<'0' or c>'9')c=getchar();
15 x=c-'0',c=getchar();
16 while(c>='0' and c<='9')x=x*10+c-'0',c=getchar();
17 return x;
18 }
19 int head[maxn],ecnt,f[maxn][maxn];
20 inline void addedge(int from,int to,int dis)
21 {
22 e[++ecnt]=(edge){to,head[from],dis},head[from]=ecnt;
23 }
24 int siz[maxn];
25 void dfs(int x,int fa)
26 {
27 for(int i=head[x];i;i=e[i].nxt)
28 {
29 int u=e[i].to;
30 if(u==fa)continue;
31 dfs(u,x);
32 siz[x]+=siz[u]+1;
33 for(int j=min(siz[x],m);j;j--)
34 for(int k=min(siz[u],j-1);k>=0;k--)
35 f[x][j]=max(f[x][j],f[x][j-k-1]+f[u][k]+e[i].dis);
36 //j表示保留j时,k全部遍历所有情况
37 }
38 }
39
40 int main()
41 {
42 n=read(),m=read();
43 for(int a,b,c,i=1;i<n;i++)
44 {
45 a=read(),b=read(),c=read();
46 addedge(a,b,c);addedge(b,a,c);
47 }
48 dfs(1,0);
49 printf("%d",f[1][m]);
50 return 0;
51 }
P2015的更多相关文章
- P2015 二叉苹果树
P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- P2015 二叉苹果树,树形dp
P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...
- 洛谷P2015 二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 【P2015】二叉苹果树 (树形DP分组背包)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是 ...
- 洛谷P2015二叉苹果树
传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...
- luogu P2015 二叉苹果树
嘟嘟嘟 这应该算一道树形背包吧,虽然我还是分不太清树形背包和树形dp的区别…… 首先dp[i][u][j] 表示在u的前 i 棵子树中,留了 j 条树枝时最大的苹果数量,而且根据题目描述,这些留下的树 ...
- 洛谷 P2015 二叉苹果树
老规矩,先放题面 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端 ...
- 【洛谷P2015】二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
随机推荐
- mysql 高级和 索引优化,目的:查的好,查的快,性能好
1-事物隔离级别: 更新丢失, 并发情况下,对同一字段进行更新,就会出现更新丢失,采用乐观锁,比较版本号或时间戳可解决 读未提交 解决了更新丢失但是会引起脏读, 二个session.sessionA中 ...
- Idea快捷键大全(Windows)
Ctrl 快捷键 介绍 Ctrl + F 在当前文件进行文本查找 (必备) Ctrl + R 在当前文件进行文本替换 (必备) Ctrl + Z 撤销 (必备) Ctrl + Y 删除光标所在行 或 ...
- MySQL零散知识点(02)
存储过程 存储过程包含了一系列可执行的sql语句,存储过程存放于MySQL中,通过调用它的名字可以执行其内部的一堆sql,类似于python中的自定义函数 基本使用 delimiter $$ crea ...
- 你,确定了解Java的String字符串?
本文将描述JDK6中String.intern()是如何实现的,以及在JDK7和JDK8中对字符串池化技术做了哪些改变. String池化介绍 String池化就是把一些值相同,但是标识符不同的字符串 ...
- WPF中选择文件和选择文件夹的方法
最近从winform转WPF,遇到了各种各样的问题.然而网上的关于WPF的资料少之又少,甚至连基本的文件选择操作,百度搜索的首页都没有一个比较好的方法.所以,踩了几个坑之后,我把我得到的方法分享给大家 ...
- Sublime Text 4 破解笔记
Sublime Text 4 破解笔记 偶然看到Sublime已经更新到版本4了,多了许多很nice的新特性,例如: 船新 UI 感知上下文的自动补全 支持 TypeScript, JSX 和 TSX ...
- Java安全之反序列化回显与内存马
Java安全之反序列化回显与内存马 0x00 前言 按照我个人的理解来说其实只要能拿到Request 和 Response对象即可进行回显的构造,当然这也是众多方式的一种.也是目前用的较多的方式.比如 ...
- Golang写文件的坑
Golang写文件一般使用os.OpenFile返回文件指针的Write方法或者WriteString或者WriteAt方法,但是在使用这三个方法时候经常会遇到写入的内容和实际内容有出入,因为这几个函 ...
- Unity触发碰撞
原文链接:Unity触发碰撞介绍 3D触发器与碰撞器 触发信息检测: 1.MonoBehaviour.OnTriggerEnter(Collider collider)当进入触发器 2.MonoBeh ...
- 24、mysql数据库优化
24.1.如何判断网站慢的排查顺序: 客户端->web->nfs->数据库: 24.2.uptime命令详解: [root@backup ~]#uptime 13:03:23 up ...