简介: 最近,阿里云PAI团队和达摩院智能计算实验室一起发布“低碳版”巨模型M6,大幅降低万亿参数超大模型训练能耗。借助我们自研的Whale框架仅使用480卡GPU,即训练出了规模达人类神经元10倍的万亿参数多模态大模型M6,与传统海外公司实现万亿参数规模相比,能耗降低超八成、效率提升近11倍。

作者 | 王林

来源 | 阿里技术公众号

最近,阿里云PAI团队和达摩院智能计算实验室一起发布“低碳版”巨模型M6,大幅降低万亿参数超大模型训练能耗。借助我们自研的Whale框架仅使用480卡GPU,即训练出了规模达人类神经元10倍的万亿参数多模态大模型M6,与传统海外公司实现万亿参数规模相比,能耗降低超八成、效率提升近11倍。

M6是国内首个实现商业化落地的多模态大模型。M6拥有超越传统AI的认知和创造能力,擅长绘画、写作、问答,在电商、制造业、文学艺术等诸多领域拥有广泛应用前景。

这里来为大家介绍支持万亿参数模型训练的Whale框架设计。

一 模型发展趋势和挑战

1 模型发展趋势

随着深度学习的火爆,模型的参数规模也增长迅速,OpenAI数据显示:

  • 2012年以前,模型计算耗时每2年增长一倍,和摩尔定律保持一致;
  • 2012年后,模型计算耗时每3.4个月翻一倍,远超硬件发展速度;

近一年模型参数规模飞速增长,谷歌、英伟达、阿里、智源研究院都发布了万亿参数模型,有大厂也发布了百亿、千亿参数模型。同时,随着模型参数规模增大,模型效果也在逐步提高,Nvidia测试Bert模型不同参数规模,发现模型困惑度随模型参数规模增加而降低。

Google在GShard paper中也发现MoETransformer 模型参数规模越大,翻译质量越高。

2 大模型训练的挑战

大模型带来模型效果提升的同时,也为训练框架带来更大的挑战,例如当我们要训练一个万亿规模的模型时会面临如下挑战:

  • 训练难:

    • GPU显存已经不够存放模型副本,数据并行已经不能满足需求;
    • 需要框架提供新的并行策略,协同多GPU能力来存放和训练模型;
    • 如何给用户提供简洁、易用的接口,让用户能很容易实现分布式版模型;
    • 超大规模模型对计算效率、通信效率都带来很大挑战,如何提高计算和通信效率;
    • 下游任务如何对接,如何支持批量预测和在线推理需求;
  • 成本高:

    • 以万亿模型为例,模型参数有4TB大小、梯度也有4TB,加上optimizer states和active tensor,显存需求巨大;
    • 业界训练同等规模模型需要的资源:英伟达 3072 A100、谷歌 2048 TPU v3,成本太高很难落地;
    • 如何降本增效,使用更少的资源,更快的训练收敛;

当前已经有一些分布式训练框架,例如:Horovod、Tensorflow Estimator、PyTorch DDP等支持数据并行,Gpipe、PipeDream、PipeMare等支持流水并行,Mesh Tensorflow、FlexFlow、OneFlow、MindSpore等支持算子拆分,但这些框架还有一些不足:

  • 模式单一:很多框架只支持部分并行策略,不能完全支持各种混合并行;
  • 接入门槛高:用户实现模型分布式版本难度大、成本高,需要有领域专家经验才能实现高效的分布式并行策略;
  • 迁移代价大:不同分布式框架并行化实现割裂,不同框架有各自定义的DSL,当用户要切换并行策略时,需要学习各种接口,重新改写模型;
  • 性能不理想:部分框架实现未考虑集群物理环境;

为了应对当前分布式训练的挑战,我们研发了分布式训练框架Whale,主要目标是:

  • 统一多种并行策略:在一个框架中支持各种并行策略以及这些策略的各种组合;
  • 简洁易用的接口:用户只需添加几行annotation即可完成并行策略的配置,模型代码不需要改动;
  • 高效的训练框架:结合硬件资源、网络拓扑和模型进行协同优化,打造高效分布式训练框架;

二 PAI自研Whale框架

1 Whale架构

我们推出统一多种并行策略的高性能分布式训练框架Whale,从如下角度来应对分布式训练的挑战:

  • 将不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略;
  • 基于Tensorflow设计一套分布式并行接口,完全兼容Tensorflow,用户仅仅只需添加几行annotation就可以实现丰富的分布式并行策略;
  • 结合模型结构和网络拓扑进行调度和通信优化,提供高效的分布式训练能力。

Whale框架如下图所示,主要分4个模块:

  • API:提供简洁易用接口,让用户组合使用各种混合并行策略;
  • Whale IR:将并行策略转成内部表达,通过TaskGraph、Multi-Dimension、VirtualDevices抽象来表达各种并行策略;
  • Whale Engine:基于WhaleIR,通过图编辑工具来构建分布式执行图;
  • Runtime:将分布式执行图转成TFGraph,再调用TF 的Runtime来执行;

2 Whale简介易用接口

Whale提供简洁易用的接口来描述各种并行策略,主要的原语:

  • cluster:配置Virtual Device的划分方法
  • replica:数据并行
  • stage:划分TaskGraph
  • pipeline:流水并行
  • split:算子拆分

用这些接口可以组合各种并行策略,例如:

  • 数据并行:

  • 流水并行:

  • 流水并行+数据并行:

  • 更多并行策略示例:

3 Whale训练流程

使用Whale进行分布式训练流程:

  • 并行策略配置:

    • 使用Whale API来为模型配置并行策略,只需添加几行annotation,无需修改模型代码,方法如 2.2节 所示;
    • 可以将模型划分为多个TaskGraph,TaskGraph支持配置多个并行策略,每个TaskGraph可以配置不同的并行策略;
  • 虚拟资源划分:

    • 按并行策略来划分Virtual Device,每个TaskGraph对应一个Virtual Device;
    • 按GPU资源和网络topo来为Virtual Device选择Physical Device;
  • 分布式执行图:

    • 基于并行策略和资源分配信息,使用图编辑工具来编辑执行图(图拷贝、拆分、插入通信节点等),生成最终的分布式执行图;
    • 调用TF的runtime来执行分布式Graph;

三 万亿M6模型预训练

万亿模型的算力需求非常大,为了降低算力需求,Whale中实现了MoE(Mixture-of-Experts)结构,MoE的主要特点是稀疏激活,使用Gating(Router)来为输入选择Top k的expert进行计算(k常用取值1、2),从而大大减少算力需求。

Whale中实现了MoE(Mixture-of-Experts) layer,并支持专家并行,将experts拆分到多个Devices上,降低单个Device的显存和算力需求。同时数据并行有利于提升训练的并发度,因此采用数据并行+专家并行组合的混合并行策略来训练M6模型:MoElayer采用专家并行,其他layer采用数据并行。

Whale中提供简洁易用的接口来进行模型的混合并行训练,只需要增加几行annotation来配置并行策略,模型本身不需要任何修改。M6模型采用数据并行+专家并行的策略,只需要增加如下图的annotation:

同时为了节约训练资源,提高训练效率,Whale中提供各种优化技术:

显存优化:

  • Auto Gradient Checkpoint,自动选择最优checkpoint节点,节约activation的显存;
  • Group-wise Apply,优化Optimizer Apply阶段的显存;
  • CPU Offload技术,优化Optimizer status和Weight的显存;
  • 通信池化,控制通信的数据块大小和并发,节约通信的显存;

计算、通信加速:

  • 采用DP+EP混合并行策略,降低算力需求;
  • 采用分组融合通信、半精度通信、拓扑感知的All2All通信算子等技术来提高通信效率;
  • 结合混合精度、编译优化等技术提高训练效率;

借助Whale框架,首次在480 V100 上,3天内完成万亿M6模型的预训练。相比此前英伟达使用3072 A100 GPU实现万亿参数、谷歌使用2048 TPU实现1.6万亿参数大模型,此次达摩院仅使用480卡V100 32G GPU就实现了万亿模型M6,节省算力资源超80%,且训练效率提升近11倍。

四 结语

模型参数规模已越来越大,大模型已成为发展趋势,为解决超大模型训练的挑战,我们自研Whale框架,将不同并行化策略进行统一抽象、封装,在一套分布式训练框架中支持多种并行策略。Whale提供简洁易用的接口,用户只需添加几行annotation即可实现各种并行策略,不需要对模型本身进行修改。同时我们结合硬件资源、网络topo、模型进行软硬件协同优化,提供高效分布式训练框架。

通过Whale框架,我们用480 V100 GPU卡训练万亿规模模型,并在3天内完成模型训练收敛,为超大规模模型训练落地提供了可能,后续我们会进一步完善Whale框架,从更大规模、更快速度、更高性价比3个维度去扩展Whale框架的能力。同时也会推动Whale能力在更多业务场景落地,让技术能力到产品能力的转变。

原文链接

本文为阿里云原创内容,未经允许不得转载。

解密万亿参数M6模型预训练背后的分布式框架Whale的更多相关文章

  1. DeepFaceLab 模型预训练参数Pretrain的使用!

    Pretrain参数是20190501版本才加入的参数,作者加入这个参数的目的应该是提升模型的训练速度和增强适应性.具体有哪些提升,需要大家去摸索,我这里分享一下自己的使用过程. ​ 这个参数仅针对S ...

  2. 【猫狗数据集】使用预训练的resnet18模型

    数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...

  3. 学习AI之NLP后对预训练语言模型——心得体会总结

    一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等 ...

  4. PyTorch在NLP任务中使用预训练词向量

    在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能.下面分别介绍使用ge ...

  5. 预训练语言模型整理(ELMo/GPT/BERT...)

    目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训 ...

  6. 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)

    转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...

  7. zz从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

    从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么 ...

  8. LUSE: 无监督数据预训练短文本编码模型

    LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私 ...

  9. 千亿参数开源大模型 BLOOM 背后的技术

    假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM ...

  10. 日吞吐万亿,腾讯云时序数据库CTSDB解密

    一.背景 随着移动互联网.物联网.大数据等行业的高速发展,数据在持续的以指数级的速度增长,比如我们使用手机访问互网络时的行为数据,各种可穿戴设备上报的状态数据,工厂中设备传感器采集的指标数据,传统互联 ...

随机推荐

  1. 1、Azure Devops之什么是Azure DevOps

    什么是Azure DevOps 1.师出名门:是微软推出的一个集项目管理.开发管理.测试管理的一个服务套件. 2.历史:前身是微软在2005年推出的Team foundation Server一个专门 ...

  2. 3DCAT首届行业生态交流会|瑞云科技技术总监赵志杰:实时渲染助力元宇宙应用触手可及

    2021年12月17日下午,由深圳市瑞云科技有限公司主办,深圳市虚拟现实产业联合会协办的 云XR如何赋能元宇宙--3DCAT实时云渲染首届行业生态合作交流会 圆满落幕.此次活动围绕 "云XR ...

  3. (1)Python基础的一些教学资料和视频

    Python相关的一些书籍 链接: https://pan.baidu.com/s/1uVT_xQRShxsw2gRhjJhikA 密码: 5fgi Python的相关进阶课程 链接: https:/ ...

  4. Python 合并Excel文件(Excel文件多sheet)

    一.Python合并Excel文件多sheet<方法1> import os import pandas as pd # 指定包含Excel文件的文件夹路径 folder_path = ' ...

  5. 【问题解决1】fatal error: X11/XXXX.h: No such file or directory

    问题现象 编译鸿蒙代码时,报如下类似的错误: 错误1: 错误2: 解决方法 step 1:安装依赖文件 sudo apt-get install apt-file sudo apt-file upda ...

  6. #KMP,容斥,dp#洛谷 5770 [JSOI2016] 无界单词

    题目传送门 分析 显然如果存在长度大于一半的border那么必然存在小于一半的 border,所以容斥一下, 设 \(dp[i]\) 表示长度为 \(i\) 的不存在公共前后缀的字符串个数,那么 \( ...

  7. 空间音频技术与生态发展高峰论坛成功举办,业界首个Audio Vivid创作工具花瓣三维声亮相

    11月26日至27日,UWA世界超高清视频产业联盟(以下简称"UWA联盟").上海交通大学-南加州大学文化创意产业学院.华为联合举办了"互联智慧,共赢未来" 超 ...

  8. Linux:vscode扩展无法下载,报错:Error while fetching extensions : XHR failed

    在Linux系统上下载安装好vscode以后,发现扩展里面无法下载安装,报错:Error while fetching extensions : XHR failed 解决办法:修改 hosts 文件 ...

  9. mysql 必知必会整理—组合查询与全文搜索[九]

    前言 简单整理一下组合查询与全文搜索. 正文 什么是组合查询,就是我们常说的交并补集. 直接上例子. 举一个例子,假如需要价格小于等于5的所有物品的一个列表,而且还想包括供应商1001和1002生产的 ...

  10. c# apollo订阅与发布(一)(迁)

    前言 apollo 翻译过来是阿波罗的意思,准确的说是:apache apollo,看了apache基本可以放心,因为它不像微软. 安装 下面我以windows 为例. https://activem ...