简介:本文翻译自 Altinity 针对 ClickHouse 的系列技术文章。面向联机分析处理(OLAP)的开源分析引擎 ClickHouse,因其优良的查询性能,PB级的数据规模,简单的架构,被国内外公司广泛采用。本系列技术文章,将详细展开介绍 ClickHouse。

前言

本文翻译自 Altinity 针对 ClickHouse 的系列技术文章。面向联机分析处理(OLAP)的开源分析引擎 ClickHouse,因其优良的查询性能,PB 级的数据规模,简单的架构,被国内外公司广泛采用。

阿里云 EMR-OLAP 团队,基于开源 ClickHouse 进行了系列优化,提供了开源 OLAP 分析引擎 ClickHouse 的云上托管服务。EMR ClickHouse 完全兼容开源版本的产品特性,同时提供集群快速部署、集群管理、扩容、缩容和监控告警等云上产品功能,并且在开源的基础上优化了 ClickHouse 的读写性能,提升了 ClickHouse 与 EMR 其他组件快速集成的能力。访问 ClickHouse - E-MapReduce - 阿里云 了解详情。

译者:何源(荆杭),阿里云计算平台事业部高级产品专家

ClickHouse 聚合函数和聚合状态

ClickHouse 可能有一个独特的功能——聚合状态(除了聚合函数外)。你可以参考  和  组合子的文档。

简而言之,许多数据库使用概率数据结构,例如 HyperLogLog(简称 HLL)。它用于唯一/去重计算,你可以在Spark、ElasticSearch、Flink、Postgres、BigQuery 和 Redis 等服务中看到它的效果。但通常你只能在聚合函数中应用此函数一次,例如查询每月唯一用户数——得到一个数字,这样就知足了。由于 HLL 结构没有对应的内部格式,因此无法重用预聚合或部分聚合的数据。而在 ClickHouse 中,你可以这样做,因为 HLL 结构是一致的。

ClickHouse 的速度非常快,其基本思路是处理原始数据而不是预聚合数据。但是让我们做个实验。例如,我们需要为上个月的唯一用户数计算一些指标。

设想:每天预聚合,然后汇总所有结果。这就是所谓的存储空间方法——以后你可以只汇总最后 30 个测量值来计算上个月的统计数据,或者只汇总最后 7 个测量值来计算上周的统计数据。

创建我们的预聚合表:

create table events_unique (
date Date,
group_id String,
client_id String,
event_type String,
product_id String,
value AggregateFunction(uniq, String)
) ENGINE = MergeTree(date, (group_id, client_id, event_type, product_id, date), 8192);

这里将我的聚合声明为 AggregateFunction(uniq, String)。我们关注的是一些独特的指标,这些指标是在 String 列上计算的(为了进一步优化,你可能应该使用 FixedString 或二进制数据)。

让我们将数据插入预聚合表:

INSERT INTO events_unique
SELECT date, group_id, client_id, event_type, product_id, uniqState(visitor_id) AS value
FROM events
GROUP BY date, group_id, client_id, event_type, product_id;

进行冒烟测试,确认其可以正常运行:

SELECT uniqMerge(value) FROM events_unique GROUP BY product_id;

现在让我们比较原始表和预聚合表的查询性能。原始查询:

SELECT uniq(visitor_id) AS c
FROM events
WHERE client_id = ‘aaaaaaaa’
AND event_type = ‘click’
AND product_id = ‘product1’
AND date >= ‘2017–01–20’
AND date < ‘2017–02–20’; ┌──────c─┐
│ 457954 │
└────────┘
1 rows in set. Elapsed: 0.948 sec. Processed 13.22 million rows, 1.61 GB (13.93 million rows/s., 1.70 GB/s.)

预聚合表的结果:

SELECT uniqMerge(value) AS c
FROM events_unique
WHERE client_id = ‘aaaaaaaa’
AND event_type = ‘click’
AND product_id = ‘product1’
AND date >= ‘2017–01–20’
AND date < ‘2017–02–20’; ┌──────c─┐
│ 457954 │
└────────┘
1 rows in set. Elapsed: 0.050 sec. Processed 39.39 thousand rows, 8.55 MB (781.22 thousand rows/s., 169.65 MB/s.)

结果表明,我们的处理时间缩短到 1/20。

在实践中,将物化视图与 AggregatingMergeTree 引擎结合使用,会比使用单独的表更方便。

总结

ClickHouse 可让你将聚合状态存储在数据库中,而不仅仅是存储在业务应用中,这有望带来颇具吸引力的性能优化和新用例。有关更多详细信息,请查看关于 AggregatingMergeTree 引擎的丰富文档。

后续

您已经了解了在 ClickHouse 中处理实时更新相关内容,本系列还包括其他内容:

原文链接

本文为阿里云原创内容,未经允许不得转载。

【ClickHouse 技术系列】- ClickHouse 聚合函数和聚合状态的更多相关文章

  1. 【SqlServer系列】聚合函数

    1   概述 本篇文章简要回顾SQL Server  聚合函数,MAX,MIN,SUM,AVG,SUM,CHECKSUM_EGG,COUNT,STDEV,STDEVP,VAR,VARP. 2   具体 ...

  2. Sql Server系列:聚合函数

    1 SUM SUM是一个求和函数,返回指定列值的总和.SUM 只能用于数字列. 其中忽略 Null 值. 语法 SUM ( [ ALL | DISTINCT ] expression ) OVER ( ...

  3. ClickHouse源码笔记5:聚合函数的源码再梳理

    笔者在源码笔记1之中分析过ClickHouse的聚合函数的实现,但是对于各个接口函数的实际如何共同工作的源码,回头看并没有那么明晰,主要原因是没有结合Aggregator的类来一起分析聚合函数的是如果 ...

  4. ClickHouse源码笔记1:聚合函数的实现

    由于工作的需求,后续笔者工作需要和开源的OLAP数据库ClickHouse打交道.ClickHouse是Yandex在2016年6月15日开源了一个分析型数据库,以强悍的单机处理能力被称道. 笔者在实 ...

  5. ClickHouse学习系列之三【配置文件说明】

    背景 最近花了些时间看了下ClickHouse文档,发现它在OLAP方面表现很优异,而且相对也比较轻量和简单,所以准备入门了解下该数据库系统.在介绍了安装和用户权限管理之后,本文对其配置文件做下相关的 ...

  6. ClickHouse学习系列之五【系统库system说明】

    背景 之前介绍过ClickHouse相关的系列文章,现在ClickHouse已经能正常使用起来了,包括副本和分片.因为ClickHouse已经可以提供服务了,现在需要关心的就是服务期间该数据库的各项性 ...

  7. ClickHouse学习系列之八【数据导入迁移&同步】

    背景 在介绍了一些ClickHouse相关的系列文章之后,大致对ClickHouse有了比较多的了解.它是一款非常优秀的OLAP数据库,为了更好的来展示其强大的OLAP能力,本文将介绍一些快速导入大量 ...

  8. 微软BI 之SSAS 系列 - 多维数据集中度量值设计时的聚合函数 (累加性_半累加性和非累加性)

    在 SSAS 系列 - 实现第一个 Cube 以及角色扮演维度,度量值格式化和计算成员的创建 中主要是通过已存在的维度和事实数据创建了一个多维数据集,并同时解释了 Role-Playing Dimen ...

  9. SQL Server温故系列(4):SQL 查询之集合运算 & 聚合函数

    1.集合运算 1.1.并集运算 UNION 1.2.差集运算 EXCEPT 1.3.交集运算 INTERSECT 1.4.集合运算小结 2.聚合函数 2.1.求行数函数 COUNT 2.2.求和函数 ...

  10. Spark 系列(十一)—— Spark SQL 聚合函数 Aggregations

    一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSe ...

随机推荐

  1. linux下find命令根据系统时间查找文件用法

    find 命令有几个用于根据您系统的时间戳搜索文件的选项.这些时间戳包括 mtime 文件内容上次修改时间 atime 文件被读取或访问的时间 ctime 文件状态变化时间 mtime 和 atime ...

  2. 还在用Calendar操作Date?Java8都弃用了,还不知道它的这款强大的工具吗?

    引言 在过去的Java版本中,日期和时间的处理主要依赖于java.util.Date和java.util.Calendar类,然而随着业务系统的复杂以及技术层面的提升,这些传统的日期时间类暴露出了若干 ...

  3. openApi generator总是生成类名为 defaultApi

    生成器可以开启 useTags 设置,开启之后会根据 api 文档中的 tags 生成前缀类名,因此,要不生成 defaultApi 需要以下操作: 1.openApi 文档中每个 url 必须要有 ...

  4. 记录--关于前端的音频可视化-Web Audio

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 背景 最近听音乐的时候,看到各种动效,突然好奇这些音频数据是如何获取并展示出来的,于是花了几天功夫去研究相关的内容,这里只是给大家一些代码 ...

  5. Openlayers 加载ArcGIS Server切片服务(自定义切片方案)

    背景 最近遇到一个需求,要使用OpenLayer加载ArcGIS Server发布的服务.如果直接拷贝OpenLayer提供的在线官方Demo,然后修改下地图服务地址是跑不通的,这是因为OpenLay ...

  6. 记录--这样封装列表 hooks,一天可以开发 20 个页面

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 这样封装列表 hooks,一天可以开发 20 个页面 前言 在做移动端的需求时,我们经常会开发一些列表页,这些列表页大多数有着相似的功能: ...

  7. SpringBoot如何优雅的进行参数校验

    写在前面 上一篇文章中我们学会了如何优雅的接收前端参数,传送门 SpringBoot如何优雅的接收前端参数 接收到参数后,接下来要做的就是校验参数的合法性.这一步的重要性就不用多说了. 即使前端已经对 ...

  8. c# webBrowser中操作网页元素全攻略

    1.获取非input控件的值: webBrowser1.Document.All["控件ID"].InnerText; 或webBrowser1.Document.GetEleme ...

  9. Oracle regexp_replace 手机号脱敏

    select '18012345678',regexp_replace('18012345678','(.){4}','****',4,1) from dual;

  10. 可变形卷积系列(一) 打破常规,MSRA提出DCNv1 | ICCV 2017 Oral

    论文提出可变形卷积帮助模型高效地学习几何变换能力,能够简单地应用到分类模型和检测模型中,思想新颖,效果显著,十分值得学习   来源:晓飞的算法工程笔记 公众号 论文: Deformable Convo ...