#Tarjan,拓扑排序#洛谷 3436 [POI2006]PRO-Professor Szu
分析
考虑有向图缩点然后拓扑排序,
最恶心的地方是这题有自环,
一旦存在自环就意味着答案一定超过阈值
其实更难过的是Tarjan大小写写错没有发现qwq
代码
#include <cstdio>
#include <cctype>
#include <stack>
#include <queue>
#define rr register
using namespace std;
const int N=1000011;
stack<int>stac; queue<int>q;
struct node{int y,next;}e[N],E[N];
int dfn[N],low[N],v[N],col[N],siz[N],m,ans,Ans;
int deg[N],n,et,Et,cnt,tot,as[N],hs[N],dp[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed min(int a,int b){return a<b?a:b;}
inline void tarjan(int x){
dfn[x]=low[x]=++tot,
v[x]=1,stac.push(x);
for (rr int i=hs[x];i;i=E[i].next)
if (!dfn[E[i].y]){
tarjan(E[i].y);
low[x]=min(low[x],low[E[i].y]);
}else if (v[E[i].y])
low[x]=min(low[x],dfn[E[i].y]);
if (dfn[x]==low[x]){
rr int y; ++cnt;
do{
y=stac.top(); stac.pop();
col[y]=cnt,++siz[cnt],v[y]=0;
}while (x^y);
}
}
signed main(){
n=iut()+1,m=iut();
for (rr int i=1;i<=m;++i){
rr int y=iut(),x=iut();
E[++Et]=(node){y,hs[x]},hs[x]=Et;
}
for (rr int i=1;i<=n;++i)
if (!dfn[i]) tarjan(i);
for (rr int i=1;i<=n;++i)
for (rr int j=hs[i];j;j=E[j].next)
if (i==E[j].y) ++siz[col[i]];
else if (col[i]^col[E[j].y]){
e[++et]=(node){col[E[j].y],as[col[i]]},
as[col[i]]=et,++deg[col[E[j].y]];
}
for (rr int i=1;i<=cnt;++i)
if (!deg[i]) q.push(i);
dp[col[n]]=1,v[col[n]]=1;
while (!q.empty()){
rr int x=q.front(); q.pop();
for (rr int i=as[x];i;i=e[i].next){
if (!(--deg[e[i].y])) q.push(e[i].y);
if (v[x]) v[e[i].y]=1; dp[e[i].y]+=dp[x];
if (siz[e[i].y]>1&&v[e[i].y]) dp[e[i].y]=36501;
if (dp[e[i].y]>36501) dp[e[i].y]=36501;
}
}
for (rr int i=1;i<=cnt;++i)
if (v[i]&&ans<dp[i]) ans=dp[i];
if (ans==36501) printf("zawsze\n");
else printf("%d\n",ans);
for (rr int i=1;i<=n;++i)
if (v[col[i]]&&ans==dp[col[i]]) ++Ans;
printf("%d\n",Ans);
for (rr int i=1;i<=n;++i)
if (v[col[i]]&&ans==dp[col[i]])
printf("%d ",i);
return 0;
}
#Tarjan,拓扑排序#洛谷 3436 [POI2006]PRO-Professor Szu的更多相关文章
- 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...
- 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序
题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足: Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆. 现在 ...
- 洛谷P1073 Tarjan + 拓扑排序 // 构造分层图
https://www.luogu.org/problemnew/show/P1073 C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市.任意两个城市之间最多只有一条道 ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- [洛谷P3444] [POI2006]ORK-Ploughing
洛谷题目链接[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He ca ...
- 【BZOJ2707】[SDOI2012]走迷宫 Tarjan+拓扑排序+高斯消元+期望
[BZOJ2707][SDOI2012]走迷宫 Description Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,M ...
- Tarjan+LCA【洛谷P2783】 有机化学之神偶尔会做作弊
[洛谷P2783] 有机化学之神偶尔会做作弊 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 有一天他一边搓炉石一边监考,而你作为一个信息竞赛的大神也来凑热闹. 然而你的化竞基友却向你求助了. ...
- 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图
思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...
- 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)
Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...
随机推荐
- django自定义模型管理器Manager及方法
django自定义模型管理器Manager及方法 自定义管理器(Manager) 在语句Book.objects.all()中,objects是一个特殊的属性,通过它来查询数据库,它就是模型的一个Ma ...
- 看看这份2023年MySQL终级面试题,提升你的内力,给你面试助力
1.MySQL 中有哪几种锁? (1)表级锁:开销小,加锁快:不会出现死锁:锁定粒度大,发生锁冲突的概率最 高,并发度最低. (2)行级锁:开销大,加锁慢:会出现死锁:锁定粒度最小,发生锁冲突的概率最 ...
- UserWarning: To get the last learning rate computed by the scheduler, please use `get_last_lr()`
将 lr = scheduler.get_lr() 改为 lr = scheduler.get_last_lr()
- LTS1.3秘钥导出和身份验证计算过程
具体的参照描述协议规范文档 TLS1.3 RCF:8446 最新一版 协议描述的密钥推导计算流程图: TLS1.3内部非复杂程度难以想象.到底CPN Tools能否支撑分析TLS,我现在从新要整 ...
- React函数式组件使用@emotion时一定要注意的问题!
怎么说呢,一个坑,踩了两天,总觉得是useSate和input的传值方法问题 在useMemo和useCallback反复测试问题 最后没办法,通过最傻方式,一点点注释代码,发现了问题 const C ...
- [学习笔记] Linux 环境下搭建基于Ngnix的反向代理服务
之前为了方便同事测试微信小程序,搭建了基于CentOS的预发布环境,.Net5 程序也已经部署好在上面,在公网上可以通过http协议的临时域名(jevonsflash.xxx.net)访问到后台Ap ...
- sqlserver 查看执行计划
-- 清除执行计划缓存 DBCC FREEPROCCACHE -- 查看缓存执行计划 SELECT * FROM sys.dm_exec_cached_plans as p CROSS APPLY s ...
- Java处理子父级菜单的方式二
处理存在子父级关系的数据是写代码的过程中常见的操作,前面讲解过使用递归的方法来做, 可以参考这篇博客 https://www.cnblogs.com/yilangcode/p/16831867.htm ...
- C#串口开发之SerialPort类封装
目录 SerialPort类 参数封装 控件操作封装 SerialPortClient类实现 SerialPortClient类使用 测试Demo 参考文章 SerialPort类 微软在.NET中对 ...
- pcm5102芯片解析之基本概念
一 前记 1 在音频领域深耕,那就要不断的前行.最近有几个项目需要用到pcm5102这颗料,藉此机会,针对这个料进行深入的研究一下.做一一些简要的分析. 二 概念 音频芯片的指标,其实,很多年都没啥变 ...