题目


分析

考虑有向图缩点然后拓扑排序,

最恶心的地方是这题有自环,

一旦存在自环就意味着答案一定超过阈值

其实更难过的是Tarjan大小写写错没有发现qwq


代码

#include <cstdio>
#include <cctype>
#include <stack>
#include <queue>
#define rr register
using namespace std;
const int N=1000011;
stack<int>stac; queue<int>q;
struct node{int y,next;}e[N],E[N];
int dfn[N],low[N],v[N],col[N],siz[N],m,ans,Ans;
int deg[N],n,et,Et,cnt,tot,as[N],hs[N],dp[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed min(int a,int b){return a<b?a:b;}
inline void tarjan(int x){
dfn[x]=low[x]=++tot,
v[x]=1,stac.push(x);
for (rr int i=hs[x];i;i=E[i].next)
if (!dfn[E[i].y]){
tarjan(E[i].y);
low[x]=min(low[x],low[E[i].y]);
}else if (v[E[i].y])
low[x]=min(low[x],dfn[E[i].y]);
if (dfn[x]==low[x]){
rr int y; ++cnt;
do{
y=stac.top(); stac.pop();
col[y]=cnt,++siz[cnt],v[y]=0;
}while (x^y);
}
}
signed main(){
n=iut()+1,m=iut();
for (rr int i=1;i<=m;++i){
rr int y=iut(),x=iut();
E[++Et]=(node){y,hs[x]},hs[x]=Et;
}
for (rr int i=1;i<=n;++i)
if (!dfn[i]) tarjan(i);
for (rr int i=1;i<=n;++i)
for (rr int j=hs[i];j;j=E[j].next)
if (i==E[j].y) ++siz[col[i]];
else if (col[i]^col[E[j].y]){
e[++et]=(node){col[E[j].y],as[col[i]]},
as[col[i]]=et,++deg[col[E[j].y]];
}
for (rr int i=1;i<=cnt;++i)
if (!deg[i]) q.push(i);
dp[col[n]]=1,v[col[n]]=1;
while (!q.empty()){
rr int x=q.front(); q.pop();
for (rr int i=as[x];i;i=e[i].next){
if (!(--deg[e[i].y])) q.push(e[i].y);
if (v[x]) v[e[i].y]=1; dp[e[i].y]+=dp[x];
if (siz[e[i].y]>1&&v[e[i].y]) dp[e[i].y]=36501;
if (dp[e[i].y]>36501) dp[e[i].y]=36501;
}
}
for (rr int i=1;i<=cnt;++i)
if (v[i]&&ans<dp[i]) ans=dp[i];
if (ans==36501) printf("zawsze\n");
else printf("%d\n",ans);
for (rr int i=1;i<=n;++i)
if (v[col[i]]&&ans==dp[col[i]]) ++Ans;
printf("%d\n",Ans);
for (rr int i=1;i<=n;++i)
if (v[col[i]]&&ans==dp[col[i]])
printf("%d ",i);
return 0;
}

#Tarjan,拓扑排序#洛谷 3436 [POI2006]PRO-Professor Szu的更多相关文章

  1. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  2. 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序

    题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在 ...

  3. 洛谷P1073 Tarjan + 拓扑排序 // 构造分层图

    https://www.luogu.org/problemnew/show/P1073 C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市.任意两个城市之间最多只有一条道 ...

  4. bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  5. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  6. [洛谷P3444] [POI2006]ORK-Ploughing

    洛谷题目链接[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He ca ...

  7. 【BZOJ2707】[SDOI2012]走迷宫 Tarjan+拓扑排序+高斯消元+期望

    [BZOJ2707][SDOI2012]走迷宫 Description Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,M ...

  8. Tarjan+LCA【洛谷P2783】 有机化学之神偶尔会做作弊

    [洛谷P2783] 有机化学之神偶尔会做作弊 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 有一天他一边搓炉石一边监考,而你作为一个信息竞赛的大神也来凑热闹. 然而你的化竞基友却向你求助了. ...

  9. 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图

    思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...

  10. 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)

    Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...

随机推荐

  1. [超实用插件]在Visual Studio中查看EF Core查询计划

    前言 EF Core是我们.NET开发中比较常用的一款ORM框架,今天我们分享一款可以直接在Visual Studio中查看EF Core查询计划调试器可视化工具(帮助开发者分析和优化数据库查询性能) ...

  2. 文心一言 VS 讯飞星火 VS chatgpt (202)-- 算法导论15.3 1题

    一.对于矩阵链乘法问题,下面两种确定最优代价的方法哪种更高效?第一种方法是穷举所有可能的括号化方案,对每种方案计算乘法运算次数,第二种方法是运行RECURSIVE-MATRIX-CHAIN.证明你的结 ...

  3. HTTP1.0/HTTP1.1/HTTP2.0的演进

    HTTP1.0 短连接,每次请求都需要重新建立连接 不支持断点续传 HTTP1.1 支持长连接,同一个客户端连接可保持长连接,请求可在连接中顺序发出. 查看http请求头中有keepalive 参数 ...

  4. MindSponge分子动力学模拟——使用MDAnalysis工具进行后分析(2024.02)

    技术背景 分子动力学模拟(Molecule Dynamics Simulation,MD),本质上是一门采样技术.通过配置力场参数.拓扑结构和积分器,对一个给定的体系不断的采样,最终得到一系列的轨迹. ...

  5. 统一身份认证系统 OpenLDAP 完整部署

    0)LDAP 介绍 LDAP 是什么?在那些地方用会用到 LDAP? LDAP英文名称:Lightweight Directory Access Protocol 轻型目录访问协议. 常用在单点登录, ...

  6. 泰凌微TLSR8258芯片解决方案开发之串口打印级别设置

    一  TRSR8258简介 该芯片是泰凌微推出来的一款纯ble的芯片,接口丰富,功耗低,资源丰富,非常适合做可穿戴物联网设备,笔者拿这颗芯片做了不少方案,感觉非常好用,所以这里写一下使用心得. 二 串 ...

  7. Codeforces Round #844:C. Equal Frequencies

    一.来源:Problem - C - Codeforces 二.题面 三.思路 先考虑一个子问题模型:我们现在有用\(m_1\)种随机字母组成的n个数,各字母个数未定,现在需要使这n个数变为\(m_2 ...

  8. C#事件(event)的理解

    一.多播委托的应用--观察者模式 遇到一个开发的问题? 面试者:以面向对象的思想实现一下的场景: 猫:Miao一声,紧接着引发了一系列的行为~ Miao:引发了一系列的动作: 从代码层面来说:代码这样 ...

  9. 公开的Webservice集锦

    备注:以下所有的来自 互联网,版权归原作者所有 股票行情数据 WEB 服务(支持香港.深圳.上海基金.债券和股票:支持多股票同时查询) Endpoint: http://webservice.webx ...

  10. using用法总结

    一.命名空间的使用 不再赘述. 二.在子类中改变基类成员的访问权限 using可以将public和protected的基类成员的访问权限改为public.protected.private,注意,us ...