HDU 3949 XOR [线性基|高斯消元]
目录
题目链接
题解
hdu3949XOR
搞死消元找到一组线性无关组
消出对角矩阵后
对于k二进制拆分
对于每列只有有一个1的,显然可以用k的二进制数直接异或得到第k大
对于一列由多个1的,由于二进制性质,由于2的幂+1次方比2的(1到幂)的和要大,所以不影响大小
代码
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
void print(int x) {
if(x < 0) {
putchar('-');
x = -x;
}
if(x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
const int maxn = 10007;
int a[maxn],tot = 0,zero = 0;
int n;
void guass() {
tot = zero = 0;
for(int i = 60;i >= 0;-- i) {
int j = tot + 1;
while(!((a[j] >> i) & 1) && j <= n)++ j;
if(j == n + 1) continue;
tot ++;
swap(a[tot],a[j]);
for(j = 1;j <= n;++ j) {
if(j != tot && ((a[j] >> i) & 1)) a[j] ^= a[tot];
}
}
if(tot != n) zero = 1;
}
int query(int x) {
int ans = 0;
x -= zero;
if(!x) return 0;
if(x >= (1ll << tot)) return -1;
for(int i = 1;i <= tot;++ i) {
if(x & (1ll << (tot - i))) ans ^= a[i];
}
return ans;
}
void work() {
n = read();
for(int i = 1;i <= n;++ i) a[i] = read();
guass();
int m = read();
while(m --) {
int x = read();
print(query(x));
putchar('\n');
}
}
main() {
int T = read();
for(int i = 1;i <= T;++ i) {
memset(a,0,sizeof a);
printf("Case #%d:\n",i);
work();
}
}
HDU 3949 XOR [线性基|高斯消元]的更多相关文章
- HDU 3949 XOR ——线形基 高斯消元
[题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...
- [bzoj 2844]线性基+高斯消元
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...
- [hdu 3949]线性基+高斯消元
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...
- Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)
题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...
- 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)
bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...
- 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...
- 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)
Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...
- hdu 3949 XOR (线性基)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...
- HDU 3949 XOR 线性基
http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...
随机推荐
- 初识 go 语言:方法,接口及并发
目录 方法,接口及并发 方法 接口 并发 信道 结束语 前言: go语言的第四篇文章,主要讲述go语言中的方法,包括指针,结构体,数组,切片,映射,函数闭包等,每个都提供了示例,可直接运行. 方法,接 ...
- 这可能是最为详细的Docker入门吐血总结
这可能是最为详细的Docker入门吐血总结 https://www.cnblogs.com/ECJTUACM-873284962/p/9789130.html Docker是什么? 在计算机技术日新 ...
- 使用Flink实现索引数据到Elasticsearch
使用Flink实现索引数据到Elasticsearch 2018-07-28 23:16:36 Yanjun 使用Flink处理数据时,可以基于Flink提供的批式处理(Batch Proce ...
- LVM备份(1)-创建LVM逻辑卷
LV(Logical Volume) - 逻辑卷 VG(Volume Group) - 卷组 PV(Physical Volume) - 物理卷 1.查看分区信息:fdisk -l 可看到磁盘大小为1 ...
- linux镜像下载
https://blog.csdn.net/qq_42570879/article/details/82853708
- 把 Nginx 创建为 Windows 的一个服务
译序:Nginx 不是为 Windows 而写.Nginx 是用在软件的工作环境中的.但软件开发环境一般都是 Windows,有时调试的需要也要装 Nginx,但 Nginx 并没给 Windows ...
- css层叠规则,优先级算法
前言 层叠样式表CSS最基本的一个特性就是层叠.冲突的声明通过层叠进行排序,由此确定最终的文档表示.而这个过程的核心就是选择器及其相关声明的特殊性.重要性.来源及继承机制.本文将详细介绍CSS层叠 特 ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [物理学与PDEs]第1章第9节 Darwin 模型 9.3 Darwin 模型
1. $\Omega$ 中 ${\bf A}={\bf A}_T+{\bf A}_L$, 其中 $\Div{\bf A}_T=0$, $\rot{\bf A}_L={\bf 0}$. 若 $$\bex ...
- Webform——JQuery基础(选择器、事件、DOM操作)
一.选择器 1.基本选择器 ①id选择器:# ②class选择器:. ③标签名选择:标签名 ④并列选择:用,隔开 ⑤后代选择:用空格隔开 代码用法展示: ...