[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.2 Lorentz 力
1. Lorentz 假定, 不论带电体的运动状态如何, 其所受的力密度 (单位体积所受的力) 为 $$\bex {\bf F}=\rho {\bf E}+{\bf j}\times{\bf B} =\rho{\bf E}+\rho {\bf v}\times {\bf B}. \eex$$ 此称为 Lorentz 公式.
2. Maxwell 方程组、Lorentz 力公式、电荷守恒定律构成了电动力学的基础.
[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.2 Lorentz 力的更多相关文章
- [物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组
1.稍微修正以前局部使用的方程组可以得到真空中的 Maxwell 方程组: $$\beex \bea \Div {\bf E}&=\cfrac{\rho}{\ve_0},\\ \rot{\bf ...
- [物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.3 媒质中电磁场量的表示
1. 电磁能量密度 $$\bex \cfrac{1}{2}({\bf E}\cdot{\bf D}+{\bf B}\cdot{\bf H}). \eex$$ 2. 电磁能量流密度向量 $$\bex { ...
- [物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.2 媒质交界面上的条件
通过 Maxwell 方程组的积分形式易在交界面上各量应满足交界面条件: $$\beex \bea \sez{{\bf D}}\cdot{\bf n}=\omega_f,&\sex{\omeg ...
- [物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.1 媒质中的 Maxwell 方程组
1.媒质的极化 (1) 束缚电荷: 被束缚在原来位置上的电荷. (2) 在电磁场中, 束缚电荷会有一微小的运动, 而产生电偶极矩. 此即称为媒质的极化. (3) 设电极化强度 (单位体积的电偶极矩) ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达
设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式. 证明: 若贮能函数 $W$ 满足 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
随机推荐
- 自定义JDBC链接池
上篇简单介绍了jdbc链接数据库: 本篇就说一下自定义连接池以及增删改查的测试: 自定义连接池 自定义链接池的原因 JDBC连接中用到Connection 在每次对数据进行增删查改 都要 开启 ...
- Linux定是调用shell脚本删除文件
编写脚本 vi delbak.sh 代码如下: #!/bin/sh location="/home/mysql/backup/" find $location -mtime +7 ...
- SpringCloud(6)分布式配置中心Spring Cloud Config
1.Spring Cloud Config 简介 在分布式系统中,由于服务数量巨多,为了方便服务配置文件统一管理,实时更新,所以需要分布式配置中心组件.在Spring Cloud中,有分布式配置中心组 ...
- .Net Core应用框架Util介绍(二)
Util的开源地址 https://github.com/dotnetcore/util Util的开源协议 Util以MIT协议开源,这是目前最宽松的开源协议,你不仅可以用于商业项目,还能把Util ...
- 玩转3D Swiper美女性感秀之思路分析总结
前言 继一次的3D魔方之后,这次利用CSS3的transform.translate.rotate.preserve-3d等结合JS的requestAnimationFrame.class带你一起玩转 ...
- kafka原理深入研究 (转 )
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- すぬけ君の塗り絵 / Snuke's Coloring AtCoder - 2068 (思维,排序,贡献)
Problem Statement We have a grid with H rows and W columns. At first, all cells were painted white. ...
- 控制结构(6): 最近最少使用(LRU)
// 上一篇:必经之地(using) // 下一篇:程序计数器(PC) 基于语言提供的基本控制结构,更好地组织和表达程序,需要良好的控制结构. There are only two hard thin ...
- [硬件]超能课堂(181):我们为什么需要4+8pin CPU供电接口?
超能课堂(181):我们为什么需要4+8pin CPU供电接口? https://www.expreview.com/68008.html 之前算过TDP 来计算机器的功耗 发现自己 理解的还是有偏差 ...
- Linux程序宕掉后如何通过gdb查看出错信息
我们在编写服务端程序的时候,由于多线程并且环境复杂,程序可能在不确定条件的情况下宕掉,还不好重新,这是我们如何获取程序的出错信息,一种方法通过打日志,有时候一些错误日志也不能体现出来,这时就用到我们的 ...