[再寄小读者之数学篇](2014-10-27 Frobenius 范数是酉不变范数)
对任两酉阵 $U,V$, 有 $$\bex \sen{A}_F=\sen{UAV}_F. \eex$$
事实上, $$\beex \bea \sen{UAV}_F^2&=\tr(V^*A^*U^*\cdot UAV)\\ &=\tr (V^*A^*AV)\\ &=\tr(AVV^*A^*)\quad\sex{\tr(AB)=\tr(BA)}\\ &=\tr(AA^*)\\ &=\tr(A^*A)\\ &=\sen{A}_F^2. \eea \eeex$$
[再寄小读者之数学篇](2014-10-27 Frobenius 范数是酉不变范数)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- .NET Core跨平台部署
目录 .NET Core跨平台部署 1. Windows-IIS 1.1 安装.NET Core Windows Server Hosting 1.2 配置应用程序池 1.3 使用发布文件 2 Lin ...
- 英语口语练习系列-C01-好棒
古诗 来自百度 It's cool. It is neat. It's righteous! It's righteous! 酷毙了! righteous是 cool 的高级了 如果一件事让你无法用 ...
- 【Python 16】分形树绘制4.0(利用递归函数绘制分形树fractal tree)
1.案例描述 树干为80,分叉角度为20,树枝长度小于5则停止.树枝长小于30,可以当作树叶了,树叶部分为绿色,其余为树干部分设为棕色. 2.案例分析 由于分形树具有对称性,自相似性,所以我们可以用 ...
- 为什么要使用TypeScript开发Web应用程序
TypeScript仍然相对较新,但已经赢得了很多信徒.继续阅读,看看这种很酷的语言的一些最好的功能. 定义TypeScript TypeScript是由Microsoft Corporation开发 ...
- java 下载word freemaker
网上有很多优质的博文了,这里这篇博客就是记录一下字自己,写demo的历程,坑和收获 在java程序中下载word 有6中方式,此处省略(嘻嘻),不过大家公认的是 freemaker 和 PageOff ...
- mmap:速度快+整块操作
mmap使得可以将设备内存映射到用户空间,从而使得用户程序获得访问硬件的能力,mmap的动作需要由内核中的驱动来实现.在使用mmap映射后,用户程序对给定范围的内存的读写就变成了对设备内存的读写,也就 ...
- (二)Basic Concepts 基本概念
Basic Concepts There are a few concepts that are core to Elasticsearch. Understanding these concepts ...
- HashMap底层
写在前面: 频繁用到 hashcode() 和 equals() put(key, value): 先计算 key 的hashcode, 找到对应的bucket,如果这个bucket上面已有key-v ...
- Centos查看tomcat状态及操作
启动:一般是执行sh tomcat/bin/startup.sh 查看:执行ps -ef |grep tomcat 输出如下 www 5144 ...等等.Bootstrap start 说明tomc ...
- axios拦截器
import axios from "axios"; axios.interceptors.response.use(response => { //=>设置响应拦截器 ...