http://poj.org/problem?id=2154

还是先套上Burnside引理:$$\begin{aligned}

ans & =\sum_{i=1}^n n^{(i,n)-1} \

& = \sum_{d=1}^n [d|n]\sum_{i=1}^n [d|i]\left[\left(\frac id,\frac nd\right)=1\right]n^{d-1} \

& = \sum_{d=1}^n [d|n]n{d-1}\sum_{i=1}{\frac nd}\left[\left(i,\frac nd\right)=1\right] \

& = \sum_{d=1}^n [d|n]n^{d-1}\varphi\left(\frac nd\right)

\end{aligned}$$

因为n非常大,为了方便,求\(\varphi\)时进行质因子分解,求\(\varphi(d)\)单次\(O\left(\frac{\sqrt d}{\log d}\right)\),时间复杂度\(O\left(T\frac{n^{\frac 34}}{\log n}\right)\)。

我是这么写的,时间复杂度非常不科学。还有一种更快的\(O(1)\)求\(\varphi\)的做法,就是先欧拉筛\(\sqrt n\)以内的\(\varphi\)并且预处理n的大于\(\sqrt n\)的质因子\(p_{last}\)(如果有的话),求\(\varphi(d)\)时如果\(d>\sqrt n\),那么返回\(\varphi\left(\frac d{p_{last}}\right)*\left(p_{last} - 1\right)\),否则直接返回\(\varphi(d)\)。时间复杂度\(O\left(T\sqrt n\right)\)。

这么简单的题我竟然说了这么多。。。

#include<cmath>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<algorithm>
using namespace std; const int N = 1000000003; int n, p, sq, num = 0, prime[100003];
bitset <100003> notp; void Euler_shai() {
for (int i = 2; i <= sq; ++i) {
if (!notp[i]) prime[++num] = i;
for (int j = 1; j <= num && prime[j] * i <= sq; ++j) {
notp[prime[j] * i] = 1;
if (i % prime[j] == 0)
break;
}
}
} int ipow(int a, int b) {
int ret = 1, w = a % p;
while (b) {
if (b & 1) (ret *= w) %= p;
(w *= w) %= p;
b >>= 1;
}
return ret;
} int PHI(int nu) {
int ret = 1;
for (int i = 1; i <= num && prime[i] <= nu; ++i)
if (nu % prime[i] == 0) {
(ret *= ((prime[i] - 1) % p)) %= p;
nu /= prime[i];
while (nu % prime[i] == 0) {
(ret *= (prime[i] % p)) %= p;
nu /= prime[i];
}
}
if (nu != 1) (ret *= ((nu - 1) % p)) %= p;
return ret;
} int work() {
sq = ceil(sqrt(n)); int ret = 0;
for (int i = 1; i < sq; ++i)
if (n % i == 0) {
(ret += ipow(n, i - 1) * PHI(n / i) % p) %= p;
(ret += ipow(n, n / i - 1) * PHI(i) % p) %= p;
}
if (sq * sq == n) (ret += ipow(n, sq - 1) * PHI(sq) % p) %= p;
return ret;
} int main() {
sq = sqrt(N);
Euler_shai(); int T; scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &p);
printf("%d\n", work());
}
return 0;
}

【POJ 2154】Color的更多相关文章

  1. 【POJ 2154】 Color (置换、burnside引理)

    Color Description Beads of N colors are connected together into a circular necklace of N beads (N< ...

  2. 【POJ 2054】 Color a Tree

    [题目链接] http://poj.org/problem?id=2054 [算法] 贪心 [代码] #include <algorithm> #include <bitset> ...

  3. 【POJ 2777】 Count Color(线段树区间更新与查询)

    [POJ 2777] Count Color(线段树区间更新与查询) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4094 ...

  4. bzoj 2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...

  5. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

  6. BZOJ2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 284  Solved: 82[Submit][St ...

  7. BZOJ2293: 【POJ Challenge】吉他英雄

    2293: [POJ Challenge]吉他英雄 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 80  Solved: 59[Submit][Stat ...

  8. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

  9. BZOJ2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 126  Solved: 90[Submit][Sta ...

随机推荐

  1. (转)梯度方向直方图HOG(Histograms of Oriented Gradients )

    HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视 ...

  2. [IOS]Xcode各版本官方下载及百度云盘下载, Mac和IOS及Xcode版本历史

    官方下载, 用开发者账户登录,建议用Safari浏览器下载. 官方下载地址: https://developer.apple.com/xcode/downloads/ 百度云盘下载地址 http:// ...

  3. .Net MVC4 上传大文件,并保存表单

    1. 前台 cshtml </pre><pre name="code" class="csharp">@model BLL.BLL.Pr ...

  4. node遇到的一些坑,npm无反应,cordova安装以后显示不是内部或外部命令

    1.输入npm -v 以后一直无反应 C:\Users\用户名 目录下找到 .npmrc文件,删除以后,执行npm -v顺利显示版本号 2.安装cordova以后一直报错,不是内部或外部命令也不是可运 ...

  5. Optimizing TLB entries for mixed page size storage in contiguous memory

    A system and method for accessing memory are provided. The system comprises a lookup buffer for stor ...

  6. $(document).ready 和 window.onload 的区别

    1.相同点 两者都用于在网页加载完后执行相应代码块. 2.不同点 window.onload 在创建完 DOM 树后,所有外部资源(图片.Flash 动画等)加载完成,且整个页面在浏览器窗口中显示完毕 ...

  7. Linux进程的创建函数fork()及其fork内核实现解析

    进程的创建之fork() Linux系统下,进程可以调用fork函数来创建新的进程.调用进程为父进程,被创建的进程为子进程. fork函数的接口定义如下: #include <unistd.h& ...

  8. python之requests库使用问题汇总

    一.请求参数类型 1.get requests.get(url, data, cookies=cookies) url:字符串: data:字典类型,可以为空: cookies:字典类型,可以为空: ...

  9. Deep Learning基础--线性解码器、卷积、池化

    本文主要是学习下Linear Decoder已经在大图片中经常采用的技术convolution和pooling,分别参考网页http://deeplearning.stanford.edu/wiki/ ...

  10. popup menu案例,无说明只代码

    效果图: 布局文件, 展示列表的容器 <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...