http://poj.org/problem?id=2154

还是先套上Burnside引理:$$\begin{aligned}

ans & =\sum_{i=1}^n n^{(i,n)-1} \

& = \sum_{d=1}^n [d|n]\sum_{i=1}^n [d|i]\left[\left(\frac id,\frac nd\right)=1\right]n^{d-1} \

& = \sum_{d=1}^n [d|n]n{d-1}\sum_{i=1}{\frac nd}\left[\left(i,\frac nd\right)=1\right] \

& = \sum_{d=1}^n [d|n]n^{d-1}\varphi\left(\frac nd\right)

\end{aligned}$$

因为n非常大,为了方便,求\(\varphi\)时进行质因子分解,求\(\varphi(d)\)单次\(O\left(\frac{\sqrt d}{\log d}\right)\),时间复杂度\(O\left(T\frac{n^{\frac 34}}{\log n}\right)\)。

我是这么写的,时间复杂度非常不科学。还有一种更快的\(O(1)\)求\(\varphi\)的做法,就是先欧拉筛\(\sqrt n\)以内的\(\varphi\)并且预处理n的大于\(\sqrt n\)的质因子\(p_{last}\)(如果有的话),求\(\varphi(d)\)时如果\(d>\sqrt n\),那么返回\(\varphi\left(\frac d{p_{last}}\right)*\left(p_{last} - 1\right)\),否则直接返回\(\varphi(d)\)。时间复杂度\(O\left(T\sqrt n\right)\)。

这么简单的题我竟然说了这么多。。。

#include<cmath>
#include<cstdio>
#include<bitset>
#include<cstring>
#include<algorithm>
using namespace std; const int N = 1000000003; int n, p, sq, num = 0, prime[100003];
bitset <100003> notp; void Euler_shai() {
for (int i = 2; i <= sq; ++i) {
if (!notp[i]) prime[++num] = i;
for (int j = 1; j <= num && prime[j] * i <= sq; ++j) {
notp[prime[j] * i] = 1;
if (i % prime[j] == 0)
break;
}
}
} int ipow(int a, int b) {
int ret = 1, w = a % p;
while (b) {
if (b & 1) (ret *= w) %= p;
(w *= w) %= p;
b >>= 1;
}
return ret;
} int PHI(int nu) {
int ret = 1;
for (int i = 1; i <= num && prime[i] <= nu; ++i)
if (nu % prime[i] == 0) {
(ret *= ((prime[i] - 1) % p)) %= p;
nu /= prime[i];
while (nu % prime[i] == 0) {
(ret *= (prime[i] % p)) %= p;
nu /= prime[i];
}
}
if (nu != 1) (ret *= ((nu - 1) % p)) %= p;
return ret;
} int work() {
sq = ceil(sqrt(n)); int ret = 0;
for (int i = 1; i < sq; ++i)
if (n % i == 0) {
(ret += ipow(n, i - 1) * PHI(n / i) % p) %= p;
(ret += ipow(n, n / i - 1) * PHI(i) % p) %= p;
}
if (sq * sq == n) (ret += ipow(n, sq - 1) * PHI(sq) % p) %= p;
return ret;
} int main() {
sq = sqrt(N);
Euler_shai(); int T; scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &p);
printf("%d\n", work());
}
return 0;
}

【POJ 2154】Color的更多相关文章

  1. 【POJ 2154】 Color (置换、burnside引理)

    Color Description Beads of N colors are connected together into a circular necklace of N beads (N< ...

  2. 【POJ 2054】 Color a Tree

    [题目链接] http://poj.org/problem?id=2054 [算法] 贪心 [代码] #include <algorithm> #include <bitset> ...

  3. 【POJ 2777】 Count Color(线段树区间更新与查询)

    [POJ 2777] Count Color(线段树区间更新与查询) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4094 ...

  4. bzoj 2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...

  5. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

  6. BZOJ2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 284  Solved: 82[Submit][St ...

  7. BZOJ2293: 【POJ Challenge】吉他英雄

    2293: [POJ Challenge]吉他英雄 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 80  Solved: 59[Submit][Stat ...

  8. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

  9. BZOJ2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 126  Solved: 90[Submit][Sta ...

随机推荐

  1. 【NOIP】提高组2016 蚯蚓

    [题目链接]Universal Online Judge [题解]本题最大的特点在于从大到小切以及切分规则一致,都是切成px和x-px. 由这两个特点很容易得到结论,后切的蚯蚓得到的px一定比先切的蚯 ...

  2. Linux系统网络基础知识及配置

    一:DNS(domain name system)简介 DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而 ...

  3. NightMare2(SCU4527+dijkstra+二分)

    题目链接:http://acm.scu.edu.cn/soj/problem.action?id=4527 题目: 题意:最短路的每条边除了边权之外还会有一个限制(财富,身上带的财富大于这个值则不能通 ...

  4. POJ 1321 棋盘问题 (深搜)

    题目链接 Description 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆 ...

  5. python初步学习-python数据类型-集合(set)

    集合 在已经学过的数据类型中: 能够索引的,如list/str,其中的元素可以重复 可变的,如list/dict,即其中的元素/键值对可以原地修改 不可变的,如str/int,即不能进行原地修改 无索 ...

  6. Elements in iteration expect to have 'v-bind:key' directives.

    code->首选项->设置->在搜索框中输入:vetur.validation.template->你懂的

  7. Java垃圾收集算法

    算法名称 过程 优缺点 1. 标记-清除算法 (Mark-Sweep) 分为两个阶段: 1.首先标记出所有需要回收的对象: 2.在标记完成后统一回收所有被标记的对象. 缺点: 1.效率问题:标记和清除 ...

  8. C++之编译器与链接器工作原理

    原文来自:http://blog.sina.com.cn/s/blog_5f8817250100i3oz.html 这里并没不是讨论大学课程中所学的<编译原理>,只是写一些我自己对C++编 ...

  9. [Linux]Linux printf 输出重定向【转】

    转自:http://www.cnblogs.com/aaronLinux/p/6765145.html?utm_source=itdadao&utm_medium=referral 方法一 # ...

  10. 己动手创建最精简的Linux

    己动手创建最精简的Linux http://blog.sina.com.cn/s/blog_71c87c170101e7ru.html 首次 LFS 搭建全过程 http://zmyxn.blog.5 ...