http://blog.csdn.net/libin56842/article/details/9908199

树形背包:

首先是建树,每个结构体为一个节点,包括下一个点序号,值,和next。

tree[ptr]会保存所有的节点序列,而head数组则是保存每个节点的最后一个子节点序列中的位置,next则是保存上一个子节点在序列中的位置,若没有则为-1。

遍历时从i=head[root]出发,到i=-1结束,不断往子节点遍历,同一层之间用next遍历,就可以遍历树的所有节点。

树状dp。由于求的是最多多少用户,那么我们可以把用户个数当成一个状态。dp[i][j]代表i节点为根节点的子树j个用户的时候最大剩余费用。

     则dp[i][j] = max(dp[i][j], dp[i][k]+dp[son][j-k]-w[i][son]);

注意两点,第一点是上面式子中的dp[i][k]必须先用一个tem[MAX]数组提取出来,因为在计算的过程中会相互影响。第二点是价值可能是负值,所以dp初始化的时候要初始化为负的最大值。

#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <cctype>
#include <vector>
#include <iterator>
#include <set>
#include <map>
#include <sstream>
using namespace std; #define mem(a,b) memset(a,b,sizeof(a))
#define pf printf
#define sf scanf
#define spf sprintf
#define pb push_back
#define debug printf("!\n")
#define MAXN 1010
#define MAX(a,b) a>b?a:b
#define blank pf("\n")
#define LL long long
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define pqueue priority_queue
#define INF 0x3f3f3f3f int n,m; struct node
{
int y,val,next;
}tree[]; int head[],dp[][],num[],tem[],ptr=; void add(int x,int y,int val)
{
tree[ptr].y = y;
tree[ptr].val = val;
tree[ptr].next = head[x];
head[x] = ptr++;
} void dfs(int root)
{
int i,j,k;
for(i=head[root]; i!=-; i=tree[i].next)
{
int p = tree[i].y;
dfs(p); for(j=;j<=num[root];j++)
tem[j] = dp[root][j]; for(j=;j<=num[root];j++)
{
for(k=;k<=num[p];k++)
{
dp[root][k+j] = max(dp[root][j+k],tem[j]+dp[p][k]-tree[i].val);
//pf("%d %d %d %d\n",root,j,k,dp[root][j+k]);
}
}
num[root]+=num[p];
}
} int main()
{
int i,j,k,a,b;
while(~sf("%d%d",&n,&m) && m+n)
{
mem(head,-);
for(i=;i<=n-m;i++)
{
sf("%d",&k);
num[i] = ;
for(j=;j<k;j++)
{
sf("%d%d",&a,&b);
add(i,a,b);
}
}
for(i=;i<=n;i++)
{
for(j=;j<=m;j++)
dp[i][j] = -;
} for(i=n-m+;i<=n;i++)
{
num[i] = ;
sf("%d",&dp[i][]);
}
dfs();
for(i=m;i>=;i--)
{
if(dp[][i]>=)
{
pf("%d\n",i);
break;
}
}
}
return ;
}

poj 1155 树形背包的更多相关文章

  1. POJ 1155 树形背包(DP) TELE

    题目链接:  POJ 1155 TELE 分析:  用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理.        dp[cnt][i+j] = max( dp[cnt][i+j ...

  2. POJ 1155 (树形DP+背包+优化)

    题目链接: http://poj.org/problem?id=1155 题目大意:电视台转播节目.对于每个根,其子结点可能是用户,也可能是中转站.但是用户肯定是叶子结点.传到中转站或是用户都要花钱, ...

  3. POJ 1155 TELE 背包型树形DP 经典题

    由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...

  4. POJ 1155 树形DP

    题意:电视台发送信号给很多用户,每个用户有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 转自:http://www.cnblogs.com/andre050 ...

  5. POJ 1155-TELE(树形背包)

    题意:电视台发送信号给很多用户,每个用户(叶子节点)有愿意出的钱,电视台经过的路线都有一定费用,求电视台不损失的情况下最多给多少用户发送信号. 分析:问题与以i为根节点的子树所包含的叶子数 #incl ...

  6. poj 1947 树形背包 (删边)

    http://blog.csdn.net/woshi250hua/article/details/7632785 这道题我一开始想的dp[i][j],i是节点,j是删除的点数,dp是最少删边的个数,然 ...

  7. poj 1947 树形背包

    重做这道题 http://blog.csdn.net/woshi250hua/article/details/7632785 http://blog.csdn.net/shuangde800/arti ...

  8. POJ 2486 树形背包DP Apple Tree

    设d(u, j, 0)表示在以u为根的子树中至多走k步并且最终返回u,能吃到的最多的苹果. 则有状态转移方程: #include <iostream> #include <cstdi ...

  9. UVa 1407 树形背包 Caves

    这道题可以和POJ 2486 树形背包DP Apple Tree比较着来做. 参考题解 #include <iostream> #include <cstdio> #inclu ...

随机推荐

  1. 洛谷P4705 玩游戏(生成函数+多项式运算)

    题面 传送门 题解 妈呀这辣鸡题目调了我整整三天--最后发现竟然是因为分治\(NTT\)之后的多项式长度不是\(2\)的幂导致把多项式的值存下来的时候发生了一些玄学错误--玄学到了我\(WA\)的点全 ...

  2. 一,Smarty模板技术/引擎——简介

    Smarty是一个使用PHP写出来的模板PHP模板引擎,它提供了逻辑与外在内容的分离,简单的讲,目的就是要使PHP程序员与美工分离,使用的程序员改变程序的逻辑内容不会影响到美工的页面设计,美工重新修改 ...

  3. jquery源码解析:expando,holdReady,ready详解

    jQuery的工具方法,其实就是静态方法,源码里面就是通过extend方法,把这些工具方法添加给jQuery构造函数的. jQuery.extend({       //当只有一个对象时,就把这个对象 ...

  4. Python中执行变量而非字符串

    Python中执行变量而非字符串 设想这样的场景,你需要大型项目的开发.但是项目的开发第一步是啥? 当然是import导入了. ...but............ 默认 import 后面跟着字符串 ...

  5. 通过cookie绕过验证码登录

    在我们做自动化的时候碰到一些比较难破解的验证码时是非常头疼的,一般来说最好的办法就是让开发屏蔽,这样最有益身心健康. 那么今天我介绍的这个方法也挺简单的,就是通过添加cookie的方式绕过验证码直接登 ...

  6. python之小记with open...as..上下文管理器

    之前在学习file文件对象是说过,open文件操作结束后要关闭文件,否则会一直占用资源.但是当出现异常,如读取过程中文件不存在或异常,则直接出现错误,close方法无法执行,文件无法关闭 with o ...

  7. [原创]SpringBoot上传图片踩的坑

    最近项目里面有个需求,要上传图片到阿里云的OSS服务.所以需要写个上传图片的接口给前端. 这个简单的接口本来就给分配了1个工时,感觉也蛮简单的.但编码过程中遇到了好几个问题,现在一一记录下来,避免再次 ...

  8. C#根据工作经验来谈谈面向对象

    C#面向对象的三大特性:封装.继承.多态. 这是一种特性,更是官方给我们的学习语法,但是我们根据过去的经验来思考一下, 到底什么是面向对象? 面向对象在我们实际开发中到底起着什么作用? 我们什么时候要 ...

  9. .net core webapi 在原有基础上修改。

    using System; using System.Collections.Generic; using System.Data; using System.IO; using System.Lin ...

  10. python自动化day4-函数嵌套、名称空间、作用域、装饰器

    1.函数嵌套 #函数的镶套调用:在调用一个函数的过程中,又调用其他函数 def max2(x,y): if x > y: return x else: return y def max4(a,b ...