题目链接:http://codeforces.com/problemset/problem/7/C

AX+BY=C已知 A B C 求 X Y;

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h> using namespace std;
typedef long long LL;
LL gcd(LL a,LL b)
{
return b ? gcd(b,a%b):a;
}
void Extend_Euclid(LL a,LL b,LL &x,LL &y)
{
if(b == )
{
x = ;
y = ;
return;
}
extend_Euclid(b,a%b,x,y);
LL tmp = x;
x = y;
y = tmp - (a / b) * y;
}
int main()
{
LL a,b,c,x,y;
while(cin>>a>>b>>c)
{
c=-c;
LL g=gcd(a,b);
if(c%g)
{
printf("-1\n");
continue;
}
extend_Euclid(a,b,x,y);
printf("%lld %lld\n",x*c,y*c);
}
return ;
}

Line---CodeForces 7C(扩展欧几里得算法)的更多相关文章

  1. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  2. (light oj 1306) Solutions to an Equation 扩展欧几里得算法

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...

  3. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  4. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  5. 欧几里得算法与扩展欧几里得算法_C++

    先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...

  6. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  7. 浅谈扩展欧几里得算法(exgcd)

    在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...

  8. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

  9. 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)

    题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...

  10. 【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元

    有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^ ...

随机推荐

  1. atitit.提升研发效率的利器---重型框架与类库的区别与设计原则

    atitit.提升研发效率的利器---重型框架与类库的区别与设计原则 1. 框架的意义---设计的复用 1 1.1. 重型框架就是it界的重武器. 1 2. 框架 VS. 库 可视化图形化 1 2.1 ...

  2. RIP协议两个版本对不连续子网的支持情况实验

    一.连续子网与不连续子网 我们经常见到说RIPv1不支持不连续子网,仅支持连续子网,那么什么是连续子网,什么是不连续子网呢? l  不连续子网:指在一个网络中,某几个连续由同一主网划分的子网在中间被多 ...

  3. CMU-15445 LAB2:实现一个支持并发操作的B+树

    概述 经过几天鏖战终于完成了lab2,本lab实现一个支持并发操作的B+树.简直B格满满. B+树 为什么需要B+树 B+树本质上是一个索引数据结构.比如我们要用某个给定的ID去检索某个student ...

  4. (译)Getting Started——1.2.1 Defining the Concept(确定理念)

    每个出色的应用都是由理念开始的.在开发应用时,你不需要把理念完善和完成后再进行开发.但是你确实需要确定你要做什么,做完后的效果如何. 为了定义理念,问自己以下的问题: 应用的受众是哪些人?应用的内容和 ...

  5. .net 常见面试题

    public void AimAt(Observer obs) { this.observers.Add(obs); } public void Cry() { Console.WriteLine(& ...

  6. Attention Mechanism

    首先介绍Attention机制: 转自:http://blog.csdn.net/malefactor/article/details/50550211 上面讲的是Soft Attention Mod ...

  7. 关于TextView的一些初步解说

    Android里面的textview是一个相当重要的类.相信做安卓的开发人员在每一个应用里面都一定用到了它,而且它也是Button,EditTextView等子控件的父类. 对于View的流程:mea ...

  8. js漂亮的弹出层

    1.漂亮的弹出层----artDialog http://aui.github.io/artDialog/ 2.弹出层 ------layer http://sentsin.com/jquery/la ...

  9. 第三篇:POSIX标准中的 “ 限制 ”

    前言 在POSIX标准中,定义了许多限制.这些限制大约分为五类,不同类型的限制获取的方式不一样. 限制值分类 1. 不变的最小值 这类型的限制值是静态的,固定的. 2. 不变值 同上 3. 运行时可以 ...

  10. 第七篇:两个经典的文件IO程序示例

    前言 本文分析两个经典的C++文件IO程序,提炼出其中文件IO的基本套路,留待日后查阅. 程序功能 程序一打印用户指定的所有文本文件,程序二向用户指定的所有文本文件中写入数据. 程序一代码及其注释 # ...