【BZOJ4753】最佳团体(分数规划,动态规划)

题面

BZOJ

Description

JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号。方便起见,JYY的编号是0号。每个候选人都由一位

编号比他小的候选人Ri推荐。如果Ri=0则说明这个候选人是JYY自己看上的。为了保证团队的和谐,JYY需要保证,

如果招募了候选人i,那么候选人Ri"也一定需要在团队中。当然了,JYY自己总是在团队里的。每一个候选人都有

一个战斗值Pi",也有一个招募费用Si"。JYY希望招募K个候选人(JYY自己不算),组成一个性价比最高的团队。

也就是,这K个被JYY选择的候选人的总战斗值与总招募总费用的比值最大。

Input

输入一行包含两个正整数K和N。

接下来N行,其中第i行包含3个整数Si,Pi,Ri表示候选人i的招募费用,战斗值和推荐人编号。

对于100%的数据满足1≤K≤N≤2500,0<"Si,Pi"≤10^4,0≤Ri<i

Output

输出一行一个实数,表示最佳比值。答案保留三位小数。

Sample Input

1 2

1000 1 0

1 1000 1

Sample Output

0.001

题解

典型的分数规划

二分答案后将点权转换为\(P-mid·S\)

然后做一个树上背包就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 3000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,K,P[MAX],S[MAX],fa[MAX];
struct Line{int v,next;}e[MAX];
int h[MAX],cnt=1,size[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
double v[MAX],f[MAX][MAX],tmp[MAX];
void Merge(int x,int y)
{
for(int i=0;i<=K+1;++i)tmp[i]=-1e18;
for(int i=1;i<=size[x];++i)
for(int j=1;j<=min(K+1-i,size[y]);++j)
tmp[i+j]=max(f[x][i]+f[y][j],tmp[i+j]);
for(int i=0;i<=K+1;++i)f[x][i]=max(f[x][i],tmp[i]);
}
void dfs(int u)
{
f[u][1]=v[u];size[u]=1;
for(int i=h[u];i;i=e[i].next)
dfs(e[i].v),Merge(u,e[i].v),size[u]+=size[e[i].v];
}
bool check(double mid)
{
//v[0]=-1e18;
for(int i=0;i<=n;++i)
for(int j=0;j<=K+1;++j)
f[i][j]=-1e18;
memset(size,0,sizeof(size));
for(int i=1;i<=n;++i)v[i]=P[i]-mid*S[i];
dfs(0);
return f[0][K+1]>=0;
}
int main()
{
K=read();n=read();
for(int i=1;i<=n;++i)
{
S[i]=read();P[i]=read();
fa[i]=read();Add(fa[i],i);
}
double l=0,r=1e6;
while(r-l>1e-4)
{
double mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.3lf\n",l);
return 0;
}

【BZOJ4753】最佳团体(分数规划,动态规划)的更多相关文章

  1. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  2. bzoj4753 最佳团体

    题目描述 JSOI 信息学代表队一共有 NN 名候选人,这些候选人从 11 到 NN 编号.方便起见,JYY 的编号是 00 号.每个候选人都由一位编号比他小的候选人R_iRi​ 推荐.如果 R_i ...

  3. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  4. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  5. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

  6. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  7. BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

    BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...

  8. [JSOI 2016] 最佳团体(树形背包+01分数规划)

    4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2003  Solved: 790[Submit][Statu ...

  9. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

随机推荐

  1. CSAPP Bomb Lab记录

    记录关于CSAPP 二进制炸弹实验过程 (CSAPP配套教学网站Bomb Lab自学版本,实验地址:http://csapp.cs.cmu.edu/2e/labs.html) (个人体验:对x86汇编 ...

  2. PhoneGap 的存储 API_localStorage 和 sessionStorage

    一.介绍 1.为了替代Cookile这门古老的客户端存储技术,Html5的WEB Storage Api 提供了俩中在 客户端存储数据库的方法:localStorage 和 sessionStorag ...

  3. 大素数测试的Miller-Rabin算法

    Miller-Rabin算法本质上是一种概率算法,存在误判的可能性,但是出错的概率非常小.出错的概率到底是多少,存在严格的理论推导. 一.费马小定理 假如p是质数,且gcd(a,p)=1,那么 a(p ...

  4. django 外键操作

    下面定义两个模型,一个主表,一个字表. 举例说明: 如何通过主表对象找到对应的子表对象? 如何通过子表对象找到对应的主表对象? class Person(models.Model); name = m ...

  5. TraceWrite waittype

    今天上午突然开发人员叫起来说数据库非常慢,马上连上数据查看. 使用sp_who2和下面脚本可以看到大量的TraceWrite 等待事件.我的第一反应就是有人启用的Profiler在生产服务器上抓数据了 ...

  6. Web网站高并发量的解决方案

    摘要:   一个小型的网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构.性能的要求都很简单.随着互联网业务的不断丰富,网站相 ...

  7. 一段基于Redis-SortedSet的限流代码

    [HttpGet] public async Task<ActionResult<string>> Get() { //限流周期:5秒 int period = 5; //周期 ...

  8. MVC学习十三:RouteDebugger插件应用

    1.下载第三方程序集RouteDebugger https://files.cnblogs.com/files/WarBlog/RouteDebugger.rar 2.把RouteDebugger程序 ...

  9. 【题解】洛谷P1514 [NOIP2010TG] 引水入城(DFS+DP)

    次元传送门:洛谷P1514 思路 可以证明如果有解 那么每个蓄水池可以覆盖到的干旱区必定是线段 证明: 举个栗子 8 9 8 7 9 7 6 9 6 明显到不了中间的点 如果不是连续的线段 中间肯定有 ...

  10. HTML5——前端预处理技术(Less、Sass、CoffeeScript)

    一.Less 1.1.概要 Less是一种动态样式语言,Less 是一门 CSS 预处理语言,它扩展了 CSS 语言,增加了变量.Mixin.函数等特性,使 CSS 更易维护和扩展. Less 将 C ...