【BZOJ4753】最佳团体(分数规划,动态规划)
【BZOJ4753】最佳团体(分数规划,动态规划)
题面
Description
JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号。方便起见,JYY的编号是0号。每个候选人都由一位
编号比他小的候选人Ri推荐。如果Ri=0则说明这个候选人是JYY自己看上的。为了保证团队的和谐,JYY需要保证,
如果招募了候选人i,那么候选人Ri"也一定需要在团队中。当然了,JYY自己总是在团队里的。每一个候选人都有
一个战斗值Pi",也有一个招募费用Si"。JYY希望招募K个候选人(JYY自己不算),组成一个性价比最高的团队。
也就是,这K个被JYY选择的候选人的总战斗值与总招募总费用的比值最大。
Input
输入一行包含两个正整数K和N。
接下来N行,其中第i行包含3个整数Si,Pi,Ri表示候选人i的招募费用,战斗值和推荐人编号。
对于100%的数据满足1≤K≤N≤2500,0<"Si,Pi"≤10^4,0≤Ri<i
Output
输出一行一个实数,表示最佳比值。答案保留三位小数。
Sample Input
1 2
1000 1 0
1 1000 1
Sample Output
0.001
题解
典型的分数规划
二分答案后将点权转换为\(P-mid·S\)
然后做一个树上背包就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 3000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,K,P[MAX],S[MAX],fa[MAX];
struct Line{int v,next;}e[MAX];
int h[MAX],cnt=1,size[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
double v[MAX],f[MAX][MAX],tmp[MAX];
void Merge(int x,int y)
{
for(int i=0;i<=K+1;++i)tmp[i]=-1e18;
for(int i=1;i<=size[x];++i)
for(int j=1;j<=min(K+1-i,size[y]);++j)
tmp[i+j]=max(f[x][i]+f[y][j],tmp[i+j]);
for(int i=0;i<=K+1;++i)f[x][i]=max(f[x][i],tmp[i]);
}
void dfs(int u)
{
f[u][1]=v[u];size[u]=1;
for(int i=h[u];i;i=e[i].next)
dfs(e[i].v),Merge(u,e[i].v),size[u]+=size[e[i].v];
}
bool check(double mid)
{
//v[0]=-1e18;
for(int i=0;i<=n;++i)
for(int j=0;j<=K+1;++j)
f[i][j]=-1e18;
memset(size,0,sizeof(size));
for(int i=1;i<=n;++i)v[i]=P[i]-mid*S[i];
dfs(0);
return f[0][K+1]>=0;
}
int main()
{
K=read();n=read();
for(int i=1;i<=n;++i)
{
S[i]=read();P[i]=read();
fa[i]=read();Add(fa[i],i);
}
double l=0,r=1e6;
while(r-l>1e-4)
{
double mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.3lf\n",l);
return 0;
}
【BZOJ4753】最佳团体(分数规划,动态规划)的更多相关文章
- 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp
题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...
- bzoj4753 最佳团体
题目描述 JSOI 信息学代表队一共有 NN 名候选人,这些候选人从 11 到 NN 编号.方便起见,JYY 的编号是 00 号.每个候选人都由一位编号比他小的候选人R_iRi 推荐.如果 R_i ...
- BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)
BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...
- bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)
菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...
- Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)
题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...
- BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划
BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...
- BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划
BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...
- [JSOI 2016] 最佳团体(树形背包+01分数规划)
4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2003 Solved: 790[Submit][Statu ...
- BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)
题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...
随机推荐
- 017random模块
import randomprint(random.random())print(random.randint(1,8)) #包括8 print(random. ...
- delegate 和 event
delegate 和 event 观察者模式 这里面综合了几本书的资料. 需求 有这么个项目: 需求是这样的: 一个气象站, 有三个传感器(温度, 湿度, 气压), 有一个WeatherData对象, ...
- 小知识积累-linux下一些简单开发配置
系统环境为 redhat enterprise 6.x,主要是针对初学者在linux下用gcc和vi简单测试开发的一些配置 1.vi 自动换行 在终端下敲入vi命令打开文件 : vi ~/.vimrc ...
- UVA151 Power Crisis
嘟嘟嘟 这道题被评为紫题完全是在假(虽然我也跟风评了紫题),顶多黄题难度. 评黄题的主要原因是得知道约瑟夫递推公式,即fn = (fn - 1 +m) % n.表示n个人报数最后的获胜者,需要注意的是 ...
- 轻松排查线上Node内存泄漏问题
I. 三种比较典型的内存泄漏 一. 闭包引用导致的泄漏 这段代码已经在很多讲解内存泄漏的地方引用了,非常经典,所以拿出来作为第一个例子,以下是泄漏代码: 'use strict'; const exp ...
- Linux学习总结(四)-两种模式修复系统,单用户,救援模式
一单用户模式 我们举例,比如忘记root 用户密码我们就可以进入单用户模式重置,该单用户模式,类似windos 安全模式开机界面快速按e 进入grub光标定位到 linux16 下一行ro crash ...
- 手绘web原型设计的感受
当下有许多流行的Web原型设计工具,比如mockplus等,mockplus在我们团队初次开发rms系统用到过,确实还不错,但是,原型工具有其优势也有其劣势. 礼拜一开会时,经理跟我说,觉得现在的LM ...
- mybatis实现最简单的增删改查
1.数据库设计 2.项目结构(针对User不用管Blogger) User.java package com.yunqing.mybatis.bean; public class User { pri ...
- Linux下安装Qt5.6.1
我的环境:CentOS 6.7 64位. 1.下载Qt: Qt版本有很多,自己比较菜,希望安装的过程越简单越好,感觉比较新的版本会好安装一些,5.4版本还要更新 /usr/lib64/libstdc ...
- 通过 openURL 方法跳转至设置 - iOS
iOS 10 以下系统版本可以通过 openURL 的方式跳转至指定的设置界面,code 如下: NSURL *url = [NSURL URLWithString:@"prefs:root ...