LCA--倍增法
一般来求LCA有3种方法
1.倍增
2.RMQ+欧拉序
3.tarjan(离线)
本文将倍增求lca
这个算法是很常见很常见的
也是较好理解的
(我也不明白假期学长讲的时候我为什么死活都不明白
自闭qwq
对不起学长qwq
明明学长讲的是最好的qwq
想学长了qwq)
---------------------------------------------------------------------------
一、基础概念
LCA定义:
LCA(Lowest Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先。
如图,结点4,6的公共祖先有1、2,但最近的公共祖先是2,即Lca(4,6) = 2
显然遇到这个问题
首先会想到暴力
再一算
时间复杂度"仅仅"是O(n)而已啦
可是如果有q次询问呢
比如说洛谷板子题
n和q(这里的q即板子题中的m都是5 * 105的级别的
那么n*q就是一个不小的数了
那么暴力一定是过不了的了
那么就只能优化优化了
--------------------------------------------------------------------
倍增法:
注意到u,v走到最近公共祖先w之前,u,v所在结点不相同。
而到达最近公共祖先w后,再往上走仍是u,v的公共祖先,即u,v走到同一个结点,这具有二分性质。
于是可以预处理出一个2k的表,
fa[k][u]表示u往上走2k步走到的结点,令根结点深度为0,则2k>depth[u]时,令fa[k][u]=-1(不合法情况的处理)
不妨假设depth[u] < depth[v]
①将v往上走d = depth[v] - depth[u]步,此时u,v所在结点深度相同,该过程可用二进制优化。
由于d是确定值,将d看成2的次方的和值,d = 2k1 + 2k2 + ... + 2km,利用fa数组,如v = fa[k1][v],v = fa[k2][v]加速。
②若此时u = v,说明Lca(u,v)已找到
③利用fa数组加速u,v一起往上走到最近公共祖先w的过程。
令d = depth[u] - depth[w],虽然d是个未知值,但依然可以看成2的次方的和。
从高位到低位枚举d的二进制位,设最低位为第0位,若枚举到第k位,有fa[k][u] != fa[k][v],则令u = fa[k][u],v = fa[k][v]。
最后
最近公共祖先w = fa[0][u] = fa[0][v],即u和v的父亲
如何预处理?
k=0时,fa[k][u]为u在有根树中的父亲,令根结点fa[k][root]=-1。
k>0时,fa[k][u]=fa[k-1][fa[k-1][u]]。树的高度最多为n,k是logn级别。
时间复杂度?
预处理O(nlogn)
单次查询O(logn)
来个板子题也很好理解呀(传送门)
上面提到过的
罗姑上也有板子题
但是我最近是由hdu的oj写的
正好还有那个的代码就直接拿过来了
#include<cstdio>
#include<iostream>
#include<cstring>
#define maxn 40000
using namespace std; struct EDGE
{
int nxt,to,v;
}edge[maxn*+];
//链式前向星(可以用结构体,也可以用独立的数组)
//注意这里结构体的大小,下面会说的 int T,n,root,cnt,m;
//T次模拟,cnt为边的个数(边的编号),n个点的树,m次询问,root是树的根(有的lca中没有给出根节点的标号,需要自己找,这里就没给)
int head[maxn+],dep[maxn+],dis[maxn+];
//head也是属于链前中的内容,写在这里因为[]中为点的标号,所以它的大小就是节点数的大小
//dep存每个节点的深度,dis存每个节点到根节点的深度
int f[maxn+][];//前面的[i]为i节点 ,后面的[j]为从i节点往上跳2^j个节点
bool vis[maxn+];//用来找根节点特意开的一个数组 void add(int x,int y,int z)//加边(用链式前向星存边)
{
edge[++cnt].to=y;
edge[cnt].v=z;
edge[cnt].nxt=head[x];
head[x]=cnt;
} void dfs(int u,int fa)
{
dep[u]=dep[fa]+;//深度加一
for(int i=; i<=; i++)//预处理,处理出u节点蹦2^i个节点所到达的节点编号
{
f[u][i+]=f[f[u][i]][i];
}
for(int i=head[u]; i; i=edge[i].nxt)//遍历他的出边(dfs)
{
if(edge[i].to==fa)
{
continue;
}//(因为正反都加边了)如果这个边指向的点是u节点的父节点,不dfs这个
dis[edge[i].to]=dis[u]+edge[i].v;//距离
f[edge[i].to][]=u;//父节点
dfs(edge[i].to,u);
}
} int LCA(int x,int y)
{
if(dep[x]<dep[y])
{
swap(x,y);
}//使x是最深的那个点
for(int i=; i>=; i--)
{
if(dep[f[x][i]]>=dep[y])//如果蹦的话x的深度仍比y的深度深,那就蹦,否则不蹦
{
x=f[x][i];
}
if(x==y)//如果x蹦到了y,那么此时的x(也就是y)就是lca
{
return x;
}
}
//此时x和y的深度相同,但不是同一个节点
for(int i=; i>=; i--)
{
if(f[x][i]!=f[y][i])//如果x和y蹦完了到了相同的节点,那么蹦到的节点一定大于或等于lca
{//所以只有蹦到了不同的节点,才可以蹦(这样才能保证没蹦超出lca)
x=f[x][i];
y=f[y][i];
}
}
return f[x][];//离真正的lca只差一步(此时不管蹦多少都超,所以前面的循环只能使x是离lca只差一层的节点)
} int main()
{
scanf("%d",&T);
while(T--)//T次模拟(每次询问都是用新的树,因此要把之前的数组全部清空)
{
memset(vis,,sizeof(vis));
memset(edge,,sizeof(edge));
memset(f,,sizeof(f));
memset(dep,,sizeof(dep));
memset(head,,sizeof(head));
memset(dis,,sizeof(dis));
cnt=;
scanf("%d%d",&n,&m);
for(int i=; i<=n-; i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
vis[y]=;
add(x,y,z);
add(y,x,z);//因为不知道x和y谁是爸爸,所以就正反都加边 ,所以结构体的大小要开两倍
}
for(int i=; i<=n; i++)
{
if(vis[i]==)
{
root=i;
break;
}
}//没有被标记过的是根节点
dfs(root,);
for(int i=; i<=m; i++)
{
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",dis[a]+dis[b]-*dis[LCA(a,b)]);
}
}
return ;
}
LCA--倍增法的更多相关文章
- LCA(最近公共祖先)——LCA倍增法
一.前人种树 博客:最近公共祖先 LCA 倍增法 博客:浅谈倍增法求LCA 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 代码: const int MAXN ...
- POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)
1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...
- hdu2586 lca倍增法
倍增法加了边的权值,bfs的时候顺便把每个点深度求出来即可 #include<iostream> #include<cstring> #include<cstdio> ...
- poj1470 LCA倍增法
倍增法模板题 #include<iostream> #include<cstring> #include<cstdio> #include<queue> ...
- 最近公共祖先 LCA 倍增法
[简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...
- luogu3379 【模板】最近公共祖先(LCA) 倍增法
题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...
- LCA—倍增法求解
LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 常见解法一般有三种 这里讲解一种在线算法-倍增 首先我们定义fa[u][j ...
- LCA - 倍增法去求第几个节点
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- POJ 1330(LCA/倍增法模板)
链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...
- 【模板】Lca倍增法
Codevs 1036 商务旅行 #include<cstdio> #include<cmath> #include<algorithm> using namesp ...
随机推荐
- 详解LSTM
https://blog.csdn.net/class_brick/article/details/79311148 今天的内容有: LSTM 思路 LSTM 的前向计算 LSTM 的反向传播 关于调 ...
- 1.Odoo产品分析系列 – 目录
Odoo产品分析 (一) – 一切为零 Odoo产品分析 (二) – 商业板块(1) – 销售(1) Odoo产品分析 (二) – 商业板块(1) – 销售(2) Odoo产品分析 (二) – 商业板 ...
- Android 基本控件的常用属性
TextView //normal 默认 bold 粗体 italic斜体 可用| 多选 android:textStyle //设置限定可以输入哪些字符 android:digits //设置文本可 ...
- Mysql 自定义函数示例
创建定义函数的的基本语法如下 # DELIMITER是用来设置边界符的 DELIMITER // CREATE FUNCTION 函数名(形参列表) RETURNS 返回类型 begin # 函数体 ...
- 章节六、3-读取Properties属性文件
一.如何读取Properties文件1.创建一个名为ReadingProperties的类 2.创建一个.propertise属性的文件,创建的方式参考“二”中步骤 3.写入如下代码 package ...
- BurpSuit添加CA证书拦截HTTPS通信
问题 BurpSuit 安装成功后可以直接使用代理对使用 HTTP 协议通信的会话进行拦截,但是对于使用 HTTPS 协议通信的会话进行代理使用时就会出现如下画面 例如访问百度主页: 原因 HTTPS ...
- XSS攻击介绍
一.概念 XSS攻击全称跨站脚本攻击,是为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS,XSS是一种在web应用中的计算机安全漏洞, ...
- LeetCode算法题-Min Stack(Java实现)
这是悦乐书的第177次更新,第179篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第36题(顺位题号是155).设计一个支持push,pop,top和在恒定时间内检索最小 ...
- Unity Shader 效果(1) :图片流光效果
很多游戏Logo中可以看到这种流光效果,一般的实现方案就是对带有光条的图片uv根据时间进行移动,然后和原图就行叠加实现,不过实现过程中稍稍有点需要注意的地方.之前考虑过风宇冲的实现方式,但是考虑到sh ...
- 聚类——WKFCM的matlab程序
聚类——WKFCM的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在聚类——WKFCM文章中已介绍了WKFCM算法的理论知识,现在用 ...