51 nod 1212 无向图最小生成树(Kruckal算法/Prime算法图解)
1212 无向图最小生成树
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
收起
输入
第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
输出
输出最小生成树的所有边的权值之和。
输入样例
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
输出样例
37
Prim算法是直接查找,多次寻找邻边的权重最小值,而Kruskal是需要先对权重排序后查找的,所以,Kruskal在算法效率上是比Prim快的,因为Kruskal只需一次对权重的排序就能找到最小生成树,而Prim算法需要多次对邻边排序才能找到。
(1)kruskal做法(时间复杂度:O(n*n)):
定义每个结点的初始祖先为自己,按照边的大小将结构体排序,然后依次遍历结构体,并查集查找祖先:
1、如果两结点的祖宗节点不一样,则将其中一个结点的祖宗作为(另一个节点的祖宗)的祖宗,对应的边即为最小生成树的边
2、如果两结点祖宗一样,则前面已将两结点连在一棵树上,对应的边不是最小生成树的边
图三遍历到v3,v4连接的边,发现祖宗不同,所以将此边加入树中,图四遍历到v1,v4连接边,但是他们的祖宗(v1,v3,v4,v6中的一点)相同,所以不能加入,图五遍历到v3,v5连接的边,发现祖宗不同,所以将此边加入树中
#include<string.h>
#include<algorithm>
#define inf 9999999
using namespace std;
struct pt{
int s,e,dis;
}a[50011];
int f[1011];
int find(int x){//并查集,寻找祖先
return x==f[x]?f[x]:find(f[x]);
}
bool cmp(pt x,pt y){
return x.dis<y.dis;
}
bool judge(pt p){
int s=find(p.s);//p.s的祖先
int e=find(p.e);//p.e的祖先
if(s!=e){//祖先不一样说明不同一棵树上
f[s]=e;//将两个中的一个定义为共同祖先
return 1;
}
else
return 0;
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=0;i<m;i++)
scanf("%d %d %d",&a[i].s,&a[i].e,&a[i].dis);
sort(a,a+m,cmp);
int ans=0,cnt=0;
for(int i=0;i<m;i++){
if(judge(a[i])){
ans+=a[i].dis;
cnt++;
if(cnt==n-1)//边数达到m-1说明全部点都在树上了
break;
}
}
printf("%d\n",ans);
return 0;
}
(2)prime做法(时间复杂度:O(n^2)):
对点进行操作,从起始点开始遍历找与当前点连接最近的点,每找出一个点更新一遍剩余点的拓展边(替换为最小值),各点最短拓展边的和即为结果;

#include<iostream>
#include<algorithm>
#include<string.h>
#define inf 9999999
using namespace std;
bool vis[1011];
int d[1011][1011],dis[1011];
int main()
{
int n,m,x,y,z;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++)
d[i][j]=d[j][i]=inf;
}
for(int i=0;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
d[x][y]=d[y][x]=z;
}
for(int i=1;i<=n;i++)
dis[i]=d[1][i];//初始化到i点连接边为1到i的距离
vis[1]=1;
int mi,id,ans=0;
for(int k=1;k<n;k++)//遍历剩下的n个点
{
mi=inf;id=-1;
for(int i=1;i<=n;i++)
if(!vis[i]&&mi>dis[i])
mi=dis[i],id=i;//找出拓展边最短的点
vis[id]=1;
ans+=mi;
for(int i=1;i<=n;i++)//更新未访问点的最短拓展边
if(!vis[i]&&dis[i]>d[id][i])
dis[i]=d[id][i];
}
printf("%d\n",ans);
return 0;
}
51 nod 1212 无向图最小生成树(Kruckal算法/Prime算法图解)的更多相关文章
- 51 nod 1212 无向图最小生成树
http://www.51nod.com/Challenge/Problem.html#problemId=1212 代码 #include<bits/stdc++.h> using na ...
- (图论)51NOD 1212 无向图最小生成树
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 <= M ...
- 51Nod 1212 无向图最小生成树 (路径压缩)
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 &l ...
- 51Nod 1212无向图最小生成树
prim #include<stdio.h> #include<string.h> #define inf 0x3f3f3f3f ][]; ],lowc[]; ],int n) ...
- 51nod 1212 无向图最小生成树(Kruskal模版题)
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. Input 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N <= 1000, 1 &l ...
- 51 Nod 1133 不重叠的线段 (贪心算法)
原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1133 题目分析:感觉这到第不应该被分到二级算法题,比 109 ...
- 51Nod-1212 无向图最小生成树
51Nod: 1212 无向图最小生成树. link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1212 1212 ...
- 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...
- 最小生成树两个经典算法(Prime算法、Kruskal算法) - biaobiao88
经典的最小生成树例子,Prime算法,具体的步骤及其注释本人均在代码中附加,请仔细阅读与品味,要求,可以熟练的打出. //Prime算法基础 #include<iostream> usin ...
随机推荐
- linux 制作U盘启动,和定制系统
找到u盘的路径 fdisk -l 将镜像写入u盘 dd if=/root/Downloads/kali-linux-2017.1-amd64.iso of=/dev/sdc 定制U盘启动系统: 安装完 ...
- SpringCloud概述
⒈官网说明 SpringCloud是基于SpringBoot提供了一套微服务解决方案,包括服务注册与发现.配置中心.全链路监控.服务网关.负载均衡.熔断器等组件,除了基于Netflix的开源组件做高度 ...
- MK64FN1M0xxx12_flash.ld链接文件解析
1.前言 本文主要对MK64FN1M0xxx12_flash.ld文件进行分析,以此来加深对链接文件的理解 2.文件详解 /* ** ################################# ...
- Go语言中的map
map是一个集合,可以使用类似处理数组和切片的方式迭代map中的元素.但map是无序的集合.无序的原因是map的实现使用了散列表. map的创建并初始化主要是两种方式: 1.内置的make函数 2.使 ...
- js学习笔记--dom部分(一)
js 学习整理之Dom部分 前面我总结了我最近学习js基础部分,当时提到过js分了三大部分,第一部分ECMA基础也就是第一次写的基础部分, 第二部分也就是DOM部分,也就是这里要写的内容的,然后第三部 ...
- VC使一个对话框不显示
//add this void CbkDlg::OnNcPaint() { ShowWindow(SW_HIDE); CDialog::OnNcPaint(); } 初始化时 ...
- Food HDU - 4292 网络流 拆点建图
http://acm.hdu.edu.cn/showproblem.php?pid=4292 给一些人想要的食物和饮料,和你拥有的数量,问最多多少人可以同时获得一份食物和一份饮料 写的时候一共用了2种 ...
- os.date
代码中有一段如下: local date = os.date("*t", set) if date then luci.sys.call("date ...
- css和javascript代码写在页面中的位置说明
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 路由跟踪表满,日志报错nf_conntrack: table full, dropping packet.
“连接跟踪表已满,开始丢包”!相信不少用iptables的同学都会见过这个错误信息吧,这个问题曾经也困扰过我好长一段时间.此问题的解决办法有四种(nf_conntrack 在CentOS 5 / ke ...