Description

Solution

感谢大佬的博客https://www.cnblogs.com/ywwyww/p/8511141.html

定义dp[i]为[p[i],p[i+1])的期望经过次数,f[i]为处理完事件i后不会再回到i点或以前,直接到终点的概率。

则$dp[i]=1+(1-f[i])+(1-f[i])^{2}+......=\frac{1}{f[i]}$

设事件i+1的胜率为k。

1:下一个事件是敌人,则f[i]=kf[i+1],即$dp[i]=\frac{dp[i+1]}{k}$。

2:下一个事件是旗子,则$f[i]=f[i+1](1+k(1-f[i+1])+k^{2}(1-f[i+1]^{2}+...)=\frac{f[i+1]}{1-k+kf[i+1]}$

把f替换为dp得$dp[i]=(1-k)dp[i+1]+k$

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=1e9+;
typedef long long ll;
ll ksm(ll x,ll k)
{
ll re=;
while (k)
{
if (k&) re=re*x%mod;
k>>=;
x=x*x%mod;
}
return re;
}
ll h,n;
ll p[],a[],b[];char c[][];
ll dp[],ans=;
int main()
{
scanf("%lld%lld",&h,&n);
for (int i=;i<=n;i++)
{
scanf("%s%lld%lld%lld",c[i],&p[i],&a[i],&b[i]);
a[i]=a[i]*ksm(b[i],mod-)%mod;
}
dp[n]=;
for (int i=n;i;i--)
if (c[i][]=='X') dp[i-]=dp[i]*ksm(a[i],mod-)%mod;
else dp[i-]=((-a[i]+mod)%mod*dp[i]%mod+a[i])%mod;
p[n+]=h;
for (int i=;i<=n;i++) ans=(ans+(p[i+]-p[i])%mod*dp[i]%mod)%mod;
cout<<ans;
}

[2016北京集训测试赛5]azelso-[概率/期望dp]的更多相关文章

  1. 【2016北京集训测试赛】azelso

    [吐槽] 首先当然是要orzyww啦 以及orzyxq奇妙顺推很强qwq 嗯..怎么说呢虽然说之前零零散散做了一些概d的题目但是总感觉好像并没有弄得比较明白啊..(我的妈果然蒟蒻) 这题的话可以说是难 ...

  2. [2016北京集训测试赛7]isn-[树状数组+dp+容斥]

    Description Solution 定义dp[i][j]为在1到i个数中选了j个数,并且保证选了i的选法总数. dp[i][j]为所有满足A[k]>A[i]的k(k<i)的dp[k] ...

  3. 2016北京集训测试赛(十)Problem A: azelso

    Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...

  4. 【2016北京集训测试赛(十)】 Azelso (期望DP)

    Time Limit: 1000 ms   Memory Limit: 256 MB Description 题解 状态表示: 这题的状态表示有点难想...... 设$f_i$表示第$i$个事件经过之 ...

  5. 【2016北京集训测试赛(二)】 thr (树形DP)

    Description 题解 (这可是一道很早就碰到的练习题然后我不会做不想做,没想到在Contest碰到欲哭无泪......) 题目大意是寻找三点对的个数,使得其中的三个点两两距离都为d. 问题在于 ...

  6. 【2016北京集训测试赛(八)】 crash的数列 (思考题)

    Description 题解 题目说这是一个具有神奇特性的数列!这句话是非常有用的因为我们发现,如果套着这个数列的定义再从原数列引出一个新数列,它居然还是一样的...... 于是我们就想到了能不能用多 ...

  7. 【2016北京集训测试赛(十六)】 River (最大流)

    Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...

  8. 【2016北京集训测试赛】river

    HINT 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. [吐槽] 嗯..看到这题的想法的话..先想到了每个点的度为2,然后就有点不知所措了 隐隐约约想到了网络流,但并没 ...

  9. [2016北京集训测试赛17]crash的游戏-[组合数+斯特林数+拉格朗日插值]

    Description Solution 核心思想是把组合数当成一个奇怪的多项式,然后拉格朗日插值..:哦对了,还要用到第二类斯特林数(就是把若干个球放到若干个盒子)的一个公式: $x^{n}=\su ...

随机推荐

  1. CXF+JAXB处理复杂数据

    CXF+JAXB处理复杂数据   CXF默认使用JAXB 来实现对象和XML之间的映射.在前面的例子 中,使用CXF发布的Webservice,其方法的参数和返回值都是简单类型. 本文讨论对象复杂性的 ...

  2. [19/04/22-星期一] GOF23_创建型模式(单例模式)

    一.概念 <Design Patterns: Elements of Reusable Object-Oriented Software>(即后述<设计模式>一书),由 Eri ...

  3. python3之安装mysql问题

    python3是不能通过pip install mysql或pipinstall mysqldb这样的形式来安装mysql. 只能 pip install PyMySQL 至于如何在文件中引用? 答曰 ...

  4. 【luogu P1879 [USACO06NOV]玉米田Corn Fields】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1879 状压DP. 设dp[i][j]表示第i行,状态为j的方案数 初始dp[0][0] = 1 这样一共12 ...

  5. HDU 3635 Dragon Balls(超级经典的带权并查集!!!新手入门)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 1158(非常好的锻炼DP思维的题目,非常经典)

    题目链接: acm.hdu.edu.cn/showproblem.php?pid=1158 Employment Planning Time Limit: 2000/1000 MS (Java/Oth ...

  7. C# WinForm开发系列 - ListBox/ListView/Panel【zz】

    原文传送:http://www.cnblogs.com/peterzb/archive/2009/06/18/1505424.html 1.ColorListBox   ColorListBox.zi ...

  8. Oracle锁处理、解锁方法

    1.查询锁情况 select sid,serial#,event,BLOCKING_SESSION from v$session where event like '%TX%'; 2.根据SID查询具 ...

  9. iOS利用block实现链式编程方法(Objective-C链式编程)

    objc利用block实现链式编程方法 因为不好读.block和其他语言的匿名函数一样,很多程序员刚开始很难主动去用他. 本文描述block作为属性的实际使用,看懂block,并讲解如何利用block ...

  10. 【MySQL】基本语句

    ##mac启动mysql的命令语句## /usr/local/mysql/bin/mysql -u root -p ##然后输入密码 查看当前存在数据库 show databases; 创建数据库 c ...