【AHOI2013】差异
题面
题解
$ \because \sum_{1 \leq i < j \leq n} i + j = \frac{n(n-1)(n+1)}2 $
所以只需求$\sum lcp(i,j)$即可。
$ \because lcp(i,j)=\min_{rank[i] \leq k \leq rank[j]}\{height[k]\} $
所以可以选用最小值分治算法:
int min[maxn];
long long ans;
void Div(int l, int r)
{
if(l == r) return (void)(ans += height[l]);
int mid = (l + r) >> 1;
Div(l, mid); Div(mid + 1, r);
min[mid] = height[mid];
min[mid + 1] = height[mid + 1];
for(RG int i = mid - 1; i >= l; i--)
min[i] = std::min(min[i + 1], height[i]);
for(RG int i = mid + 2; i <= r; i++)
min[i] = std::min(min[i - 1], height[i]);
int j = mid;
for(RG int i = mid; i >= l; i--)
{
while(j < r && min[j + 1] >= min[i]) ++j;
ans += 1ll * min[i] * (j - mid);
}
j = mid + 1;
for(RG int i = mid + 1; i <= r; i++)
{
while(j > l && min[j - 1] > min[i]) --j;
ans += 1ll * min[i] * (mid + 1 - j);
}
}
//...
Div(1, n);
但是我们要精益求精,我们可以想一想$O(n)$的算法。
用栈维护前面与$i$最近且小于等于$height[i]$的元素$p$
则转移方程为:
$ f[i]=f[p]+(i-p)\times height[i] $
//...
long long f[maxn];
struct node { int val, pos; };
std::stack<node> stk;
int main()
{
//...
long long ans = 0; int pos = 0;
for(RG int i = 1; i <= n; i++)
{
int p = pos;
while(!stk.empty() && stk.top().val > height[i]) stk.pop();
if(!stk.empty()) p = stk.top().pos;
ans += (f[i] = f[p] + (i - p) * height[i]);
if(!height[i]) pos = i;
stk.push((node){height[i], i});
}
}
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<stack>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(500010);
char s[maxn];
int n, sa[maxn], rank[maxn], height[maxn];
void sort(int m)
{
static int t[maxn], t2[maxn], c[maxn];
int i, *x = t, *y = t2, p = 0;
std::fill(c + 1, c + m + 1, 0);
for(i = 1; i <= n; i++) ++c[x[i] = s[i]];
for(i = 1; i <= m; i++) c[i] += c[i - 1];
for(i = n; i; i--) sa[c[x[i]]--] = i;
for(RG int k = 1; k <= n && p < n; k <<= 1)
{
p = 0;
for(i = n - k + 1; i <= n; i++) y[++p] = i;
for(i = 1; i <= n; i++) if(sa[i] > k) y[++p] = sa[i] - k;
std::fill(c + 1, c + m + 1, 0);
for(i = 1; i <= n; i++) ++c[x[y[i]]];
for(i = 1; i <= m; i++) c[i] += c[i - 1];
for(i = n; i; i--) sa[c[x[y[i]]]--] = y[i];
std::swap(x, y), p = 1, x[sa[1]] = 1;
for(i = 2; i <= n; i++)
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]]
&& y[sa[i] + k] == y[sa[i - 1] + k]) ? p : ++p;
m = p;
}
}
void get_height()
{
int k = 0;
for(RG int i = 1; i <= n; i++) rank[sa[i]] = i;
for(RG int i = 1; i <= n; i++)
{
if(k) --k;
int j = sa[rank[i] - 1];
while(s[i + k] == s[j + k]) ++k;
height[rank[i]] = k;
}
}
long long f[maxn];
struct node { int val, pos; };
std::stack<node> stk;
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
scanf("%s", s + 1); n = strlen(s + 1);
sort(130); get_height();
long long ans = 0; int pos = 0;
for(RG int i = 1; i <= n; i++)
{
int p = pos;
while(!stk.empty() && stk.top().val > height[i]) stk.pop();
if(!stk.empty()) p = stk.top().pos;
ans += (f[i] = f[p] + (i - p) * height[i]);
if(!height[i]) pos = i;
stk.push((node){height[i], i});
}
printf("%lld\n", 1ll * n * (n - 1) * (n + 1) / 2 - ans * 2);
return 0;
}
【AHOI2013】差异的更多相关文章
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- bzoj 3238 Ahoi2013 差异
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2357 Solved: 1067[Submit][Status ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- BZOJ_3238_[Ahoi2013]差异_后缀自动机
BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...
- BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈
BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...
- 【LG4248】[AHOI2013]差异
[LG4248][AHOI2013]差异 题面 洛谷 题解 后缀数组版做法戳我 我们将原串\(reverse\),根据后缀自动机的性质,两个后缀的\(lcp\)一定是我们在反串后两个前缀的\(lca\ ...
- 【BZOJ3238】[AHOI2013]差异
[BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...
- P4248 [AHOI2013]差异 解题报告
P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \s ...
- 【BZOJ 3238】 3238: [Ahoi2013]差异(SAM)
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 3047 Solved: 1375 Description In ...
- bzoj 3238: [Ahoi2013]差异 -- 后缀数组
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...
随机推荐
- UVa 1639 - Candy(数学期望 + 精度处理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- POJ3384 Feng Shui
嘟嘟嘟 昨天我看到的这道题,今天终于A了. 写这道题的时间其实并不长,主要是我为这题现学了一个半平面相交(虽然是\(O(n ^ 2)\)的--) 思路说难也不难,关键是第一步的转化得想到. 首先可以肯 ...
- python之使用__future__
Python的新版本会引入一些新的功能特性,但一般一部分的新功能可以在旧版本上测试,测试成功再移植到新的版本上,旧版本可以通过导入__future__模块的某些功能,测试新版本的新功能.(注意:fut ...
- 20165302 实验一 java开发环境的熟悉
20165302实验一 java开发环境的熟悉 一,实验内容与步骤 1.命令行下java程序开发 ①待编译运行代码 package csj; import java.util.Scanner; pub ...
- 想要使用 for循环,就要添加 索引器
- urlparse 用法
ifrom urllib2 import urlparse ‘’ captcha_id = urlparse.parse_qs(urlparse.urlparse(link).query, True) ...
- 超低功耗WiFi :ESP8089
ESP8089是一个完整且自成体系的Wi-Fi网络解决方案.当ESP8089作为Wi-Fi适配器 时,可以将其与任何微控制器配合,无线网络接入可以实现在配合的任何一种处理器上p 网络连接只需通过SPI ...
- Dubbo实践(二)架构
架构 节点角色说明 节点 角色说明 Provider 暴露服务的服务提供方 Consumer 调用远程服务的服务消费方 Registry 服务注册与发现的注册中心 Monitor 统计服务的调用次数和 ...
- JNI由浅入深_9_JNI 异常处理
1 .本地代码中如何缓存和抛出异常 下面的代码中演示了如何声明一个会抛出异常的本地方法.CatchThrow这个类声明了一个会抛出IllegalArgumentException异常的名叫doit的本 ...
- 结合cocos2d-x开发配置sublime text
开发cocos2d-x前端的非核心开发人员对于编辑器的选择,多数的选择有两个,一个是传统的ultraedit,另外的就是现在很流行的sublime text.以前我是比较喜欢用ultraedit的,但 ...