1.自己写的计算auc的代码,用scikit-learn的auc计算函数sklearn.metrics.auc(xyreorder=False)做了一些测试,结果是一样的,如有错误,欢迎指正。

思路:1.首先对预测值进行排序,排序的方式用了python自带的函数sorted,详见注释。

   2.对所有样本按照预测值从小到大标记rank,rank其实就是index+1,index是排序后的sorted_pred数组中的索引

   3.将所有正样本的rank相加,遇到预测值相等的情况,不管样本的正负性,对rank要取平均值再相加

4.将rank相加的和减去正样本排在正样本之后的情况,再除以总的组合数,得到auc


 # -*- coding: utf-8 -*-
"""
Created on Wed May 3 10:48:28 2017 @author: Vincent
"""
import numpy as np
from sklearn import metrics
y = np.array( [1, 0, 0, 1, 1, 1, 0, 1, 1, 1])
pred = np.array([0.9, 0.9,0.8, 0.8, 0.7,0.7,0.7,0.6,0.5,0.4])
fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=1)
print(metrics.auc(fpr, tpr))
def getAuc(labels, pred) :
'''将pred数组的索引值按照pred[i]的大小正序排序,返回的sorted_pred是一个新的数组,
sorted_pred[0]就是pred[i]中值最小的i的值,对于这个例子,sorted_pred[0]=8
'''
sorted_pred = sorted(range(len(pred)), key = lambda i : pred[i])
pos = 0.0 #正样本个数
neg = 0.0 #负样本个数
auc = 0.0
last_pre = pred[sorted_pred[0]]
count = 0.0
pre_sum = 0.0 #当前位置之前的预测值相等的rank之和,rank是从1开始的,所以在下面的代码中就是i+1
pos_count = 0.0 #记录预测值相等的样本中标签是正的样本的个数
for i in range(len(sorted_pred)) :
if labels[sorted_pred[i]] > 0:
pos += 1
else:
neg += 1
if last_pre != pred[sorted_pred[i]]: #当前的预测概率值与前一个值不相同
#对于预测值相等的样本rank需要取平均值,并且对rank求和
auc += pos_count * pre_sum / count
count = 1
pre_sum = i + 1 #更新为当前的rank
last_pre = pred[sorted_pred[i]]
if labels[sorted_pred[i]] > 0:
pos_count = 1 #如果当前样本是正样本 ,则置为1
else:
pos_count = 0 #反之置为0
else:
pre_sum += i + 1 #记录rank的和
count += 1 #记录rank和对应的样本数,pre_sum / count就是平均值了
if labels[sorted_pred[i]] > 0:#如果是正样本
pos_count += 1 #正样本数加1
auc += pos_count * pre_sum / count #加上最后一个预测值相同的样本组
auc -= pos *(pos + 1) / 2 #减去正样本在正样本之前的情况
auc = auc / (pos * neg) #除以总的组合数
return auc
print(getAuc(y, pred))

2.awk代码

 #计算auc,输入分别为预测值(可以乘以一个倍数之后转化为整数),该相同预测值的样本个数,该相同预测值的正样本个数
sort -t $'\t' -k 1,1n | awk -F"\t" 'BEGIN{
OFS="\t";
now_q="";
begin_rank=1;
now_pos_num=0;
now_neg_num=0;
total_pos_rank=0;
total_pos_num=0;
total_neg_num=0;
}function clear(){
begin_rank += now_pos_num + now_neg_num;
now_pos_num=0;
now_neg_num=0;
}function update(){
now_pos_num += pos_num;
now_neg_num += neg_num;
}function output(){
n = now_pos_num + now_neg_num;
avg_rank = begin_rank + (n-1)/2;
tmp_all_pos_rank = avg_rank * now_pos_num;
total_pos_rank += tmp_all_pos_rank;
total_pos_num += now_pos_num;
total_neg_num += now_neg_num;
}{
q=$1;
show=$2;
clk=$3;
pos_num=clk;
neg_num=show-clk;
if(now_q!=q){
if(now_q!=""){
output();
clear();
}
now_q=q;
}
update(); }END{
output();
auc=0;
m=total_pos_num;
n=total_neg_num;
if(m>0 && n>0){
auc = (total_pos_rank-m*(m+1)/2) / (m*n);
}
print auc;
}'

计算auc-python/awk的更多相关文章

  1. python计算auc指标

    1.安装scikit-learn 1.1Scikit-learn 依赖 Python (>= 2.7 or >= 3.3), NumPy (>= 1.8.2), SciPy (> ...

  2. Anaconda 用于科学计算的 Python 发行版

    用于科学计算的 Python 发行版: 1.Anaconda  https://www.continuum.io/    公司continuum.  有商业版本. Anaconda is the le ...

  3. split function of Perl,Python,Awk

    使用中常用到Perl,Python,AWK,R, 虽然Java,C,C++,Vala也学过但是就是不喜欢,你说怎么办. 看来一辈子脚本的命. Perl @rray = split /PATTERN/, ...

  4. MATLAB画ROC曲线,及计算AUC值

    根据决策值和真实标签画ROC曲线,同时计算AUC的值 步骤: 根据决策值和真实标签画ROC曲线,同时计算AUC的值: 计算算法的决策函数值deci 根据决策函数值deci对真实标签y进行降序排序,得到 ...

  5. 用于水和水蒸汽物性计算的Python模块——iapws

    无论是火电还是核电,将能量转化为电能的方式主要还是烧开水,即加热水产生高压蒸汽驱动汽轮机做功再发电.在进行热力循环分析.流动传热计算时,需获得水和水蒸汽的物性参数.网上主流的水蒸汽物性计算程序是上海成 ...

  6. 【Anaconda】:科学计算的Python发行版

    [背景] Python易用,但包管理和Python不同版本的问题比较头疼,特别是当你使用Windows的时候.为了解决这些问题,有不少发行版的Python,比如WinPython.Anaconda等, ...

  7. 栈应用之 后缀表达式计算 (python 版)

    栈应用之 后缀表达式计算 (python 版) 后缀表达式特别适合计算机处理 1.  中缀表达式.前缀表达式.后缀表达式区别  中缀表达式:(3 - 5) * (6 + 17 * 4) / 3 17 ...

  8. 科学计算:Python 分析数据找问题,并图形化

    对于记录的数据,如何用 Python 进行分析.或图形化呢? 本文将介绍 numpy, matplotlib, pandas, scipy 几个包,进行数据分析.与图形化. 准备环境 Python 环 ...

  9. Python计算AUC

    AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积.另一种解释是:随机抽出一对样本(一个正样本,一个负样本),然后用训练得到的分类器来对这两个样本进 ...

  10. [转] MachingLearning中的距离相似性计算以及python实现

    参考:https://blog.csdn.net/gamer_gyt/article/details/75165842#t16  https://blog.csdn.net/ymlgrss/artic ...

随机推荐

  1. SharpGL学习笔记(四) 正射投影

    上节谈到投影变换分为透视投影(perspective projection)和正射投影(orthographic projection)两种. 透视投影我们已经介绍过了, 现在谈谈正视投影. 正射投影 ...

  2. Oracle SQL Developer保持数据库连接的方法

    一.概述 从navicat切到pl/sql developer,但是发现个bug,因为本地客户端pl/sql developer的字符集 和数据库服务器的字符集不一致,导致一个很奇葩的东西. 本来我有 ...

  3. 【黑金原创教程】【FPGA那些事儿-驱动篇I 】实验十一:PS/2模块⑤ — 扩展鼠标

    实验十一:PS/2模块⑤ — 扩展鼠标 当普通鼠标即三键鼠标再也无法满足需求的时候,扩展鼠标即滚轮鼠标就诞生了,然而实验十一的实验目的就是实现滚轮鼠标的驱动.不过,进入整体之前,先让我们来了解一下鼠标 ...

  4. tars环境部署

    author: headsen  chen date: 2018-10-18 12:35:40 注意:依据Git上的tars搭建步骤整理而来 参考: https://max.book118.com/h ...

  5. Coding和Git的环境搭建

    Github太慢了.打开网页慢,下载也只有几kb. 于是找了国内的Git,据说coding不错.就申请了个. 其实csdn也有...但是没人家的专业... 1 注册coding  https://co ...

  6. Log4net配置之Winform项目

    具体方法如下: 一.App.config配置 <?xml version="1.0" encoding="utf-8" ?> <configu ...

  7. Penn Treebank

    NLP中常用的PTB语料库,全名Penn Treebank.Penn Treebank是一个项目的名称,项目目的是对语料进行标注,标注内容包括词性标注以及句法分析. 语料来源为:1989年华尔街日报语 ...

  8. gnuplot生成gif动画

    最近有个任务需要生成一个动态变化的图,然后突然发现gnuplot竟然可以生成gif动画,当真是应正了博客Gnuplot surprising的子标题: I always tell myself: &q ...

  9. 手写代码UI,xib和StoryBoard间的的优劣比较

    在UI制作方面,逐渐分化三种主要流派:使用代码手写UI:使用单个xib文件组织viewController或者view:使用StoryBoard来通过单个或很少的几个文件构建UI.三种方式各有优劣,也 ...

  10. PAT-GPLT L1-033 - 出生年 - [简单模拟]

    题目链接:https://www.patest.cn/contests/gplt/L1-033 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standar ...