BZOJ3812 清华集训2014 主旋律

直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的。
非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集。
由于$n$很小,我们可以考虑状态压缩。
对于点集$S$,我们钦定一个它的子集$K$入度数为$0$,希望除去$K$以外的$S$度数不为$0$
设钦定$K$的度数为$0$其他随意的方案数为$H_{S,K}=2^{sum_S-sum_{\{S^K\}\rightarrow\{k\}}}$
设$G_S$表示$S$分为奇数个强联通分量的方案数减去分为偶数个强联通分量的方案数。
设$F_S$表示$S$的强联通生成子图数。
$G_S=-\sum\limits_{K\subset S}F_{S-K}\cdot G_K$
$F_S=2^{sum_S}-\sum\limits_{K\subset S}H_{S,K} G_K$
细节处理,对于每一个$S$,先计算$F_S$,最后再将$F_S$再加到$G_S$中去。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define mod 1000000007
#define M 33000
#define N 20
using namespace std;
int read(){
int nm=0,fh=1;char cw=getchar();
for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
int n,m,sq[M],u,v;
int ind[M],otd[M],G[M],F[M],cnt[M],MAXN,sum[M],W[M];
int mul(int x,int y){return (LL)x*(LL)y%mod;}
int add(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
int mus(int x,int y){return (x-y)<0?x-y+mod:x-y;}
void init(int now,int sta){
if(!now) return; init((now-1)&sta,sta);
int dt=(now&-now);
W[now]=add(W[now^dt],cnt[ind[dt]&sta]);
}
int main(){
n=read(),m=read(),sq[0]=1,MAXN=(1<<n);
for(int i=1;i<=m;i++){
sq[i]=add(sq[i-1],sq[i-1]),u=read()-1,v=read()-1;
ind[1<<v]|=(1<<u),otd[1<<u]|=(1<<v);
}
for(int i=1;i<MAXN;i++) cnt[i]=cnt[i>>1]+(i&1);
for(int i=1;i<MAXN;i++){
int ot=i-(i&-i),dt=(i&-i);
sum[i]=sum[ot]+cnt[ind[dt]&i]+cnt[otd[dt]&i];
F[i]=sq[sum[i]],init(i,i);
for(int S=ot;S;S=((S-1)&ot)) G[i]=mus(G[i],mul(F[i^S],G[S]));
for(int S=i;S;S=((S-1)&i)) F[i]=mus(F[i],mul(sq[sum[i]-W[S]],G[S]));
G[i]=add(G[i],F[i]);
}
printf("%d\n",F[MAXN-1]);
return 0;
}
BZOJ3812 清华集训2014 主旋律的更多相关文章
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- 【UOJ#37】 [清华集训2014] 主旋律
题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
- 清华集训2014 day1 task2 主旋律
题目 这可算是一道非常好的关于容斥原理的题了. 算法 好吧,这题我毫无思路,直接给正解. 首先,问题的正面不容易求,那么就求反面吧: 有多少种添加边的方案,使得这个图是DAG图(这里及以下所说的DAG ...
- UOJ#37. 【清华集训2014】主旋律
题目大意: 传送门 题解: 神题……Orz. 首先正难则反. 设$f_S$表示选取点集状态为s时,这部分图可以构成非强联通图的方案数. 设$p_{S,i}$表示点集s缩点后有i个入度为0点的方案数,保 ...
- 【UOJ】#37. 【清华集训2014】主旋律
题解 一道,神奇的题= = 我们考虑正难则反,我们求去掉这些边后有多少图不是强连通的 怎么求呢,不是强连通的图缩点后一定是一个DAG,并且这个DAG里面有两个点 我们想一下,如果我们把1当成入度为0的 ...
随机推荐
- xcrun: error: unable to find utility "instruments", not a developer tool or in PATH
xcrun: error: unable to find utility "instruments", not a developer tool or in PATH 用web ...
- RGBA与半透明背景
概念 所谓RGBA颜色,就是RGB三原色加ALPHA.在给背景加入颜色的同一时候.提供透明度特性. 用法 background:rgba(90,90, 54, 0.5); 支持情况 Firefox 3 ...
- Python小白的发展之路之Python基础(二)【字符串、列表、集合、文件操作】
列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1.列表.元组操作 (1)列表 列表是可变的(mutable)——可以改变列表的内容,这不同于字符串和元组,字符串和元组都是不 ...
- eclipse里面用svn关联项目
eclipse里面共享项目经常会用到svn或者git插件 关联项目的步骤如下: 如果 点击finish会遇到卡住问题的话,不要着急,我们需要设置svn的client设置: 如果设置了之后还是很卡的话, ...
- 【python】-- RabbitMQ Publish\Subscribe(消息发布\订阅)
RabbitMQ RabbitMQ Publish\Subscribe(消息发布\订阅) 1对1的消息发送和接收,即消息只能发送到指定的queue里,但这样使用有些局限性,有些时候你想让你的消息被所有 ...
- Qt状态机框架(状态机就开始异步的运行了,也就是说,它成为了我们应用程序事件循环的一部分了)
状态机框架 Qt中的状态机框架为我们提供了很多的API和类,使我们能更容易的在自己的应用程序中集成状态动画.这个框架是和Qt的元对象系统机密结合在一起的.比如,各个状态之间的转换是通过信号触发的,状态 ...
- ppm图像相关
PPM图像格式介绍 直接拿具体的数据来说明是最直接的,使用ue打开ppm文件,采用的都是十六进制asc码表示的,这里要注意地址00000000h中的最后一个字母是始终不变的,这原来没注意晕了我好久,第 ...
- Redis QPS测试
1.计算qps: 1)redis发布版本中自带了redis-benchmark性能测试工具,可以使用它计算qps.示例:使用50个并发连接,发出100000个请求,每个请求的数据为2kb,测试host ...
- 根据UI找对应的j s 脚本
1.页面内容的脚本 2.页面外部脚本 3.根据UI找j s 脚本
- Swift URL encode
前言 在WEB前端开发,服务器后台开发,或者是客户端开发中,对URL进行编码是一件很常见的事情,但是由于各个年代的RFC文档中的内容一直在变化,一些年代久远的代码就对URL编码和解码的规则和现在的有一 ...