[USACO08NOV]安慰奶牛Cheering up the Cow BZOJ 1232 Kruskal
Farmer John变得非常懒, 他不想再继续维护供奶牛之间供通行的道路. 道路被用来连接N (5 <= N <= 10,000)个牧场, 牧场被连续地编号为1..N. 每一个牧场都是一个奶牛的家. FJ计划除去P(N-1 <= P <= 100,000)条道路中尽可能多的道路, 但是还要保持牧场之间的连通性. 你首先要决定那些道路是需要保留的N-1条道路. 第j条双向道路连接了牧场S_j和E_j (1 <= S_j <= N; 1 <= E_j <= N; S_j != E_j), 而且走完它需要L_j (0 <= L_j <= 1,000)的时间. 没有两个牧场是被一条以上的道路所连接. 奶牛们非常伤心, 因为她们的交通系统被削减了. 你需要到每一个奶牛的住处去安慰她们. 每次你到达第i个牧场的时候(即使你已经到过), 你必须花去C_i (1 <= C_i <= 1,000)的时间和奶牛交谈. 你每个晚上都会在同一个牧场(这是供你选择的)过夜, 直到奶牛们都从悲伤中缓过神来. 在早上起来和晚上回去睡觉的时候, 你都需要和在你睡觉的牧场的奶牛交谈一次. 这样你才能完成你的交谈任务. 假设Farmer John采纳了你的建议, 请计算出使所有奶牛都被安慰的最少时间. 对于你前10次的提交, 你的程序会在一部分正式的测试数据上运行, 并且返回运行的结果.
Sample Output176 Hint
* 第 1 行: 用空格隔开的两个整数N和P * 第 2..N+1 行: 第i+1行包含了一个整数: C_i * 第 N+2..N+P+1 行: 第 N+j+1 行包含用空格隔开的三个整数: S_j, E_j 和 L_j
Output
第 1 行: 一个整数, 所需要的总时间(包含和在你所在的牧场的奶牛的两次谈话时间).
Sample Input5 7
10
10
20
6
30
1 2 5
2 3 5
2 4 12
3 4 17
2 5 15
3 5 6
4 5 12
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 200005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m;
struct node {
int u, v, w;
}edge[maxn]; int valnode[maxn]; bool cmp(node a, node b) {
return a.w < b.w;
}
int tot;
int fa[maxn];
int findfa(int x) {
if (x == fa[x])return x;
return fa[x] = findfa(fa[x]);
} int kruskal() {
int ans = 0;
for (int i = 0; i <= n; i++)fa[i] = i;
sort(edge , edge + tot, cmp);
int cnt = 0;
for (int i = 0; i < tot; i++) {
int u = edge[i].u; int v = edge[i].v;
int w = edge[i].w;
if (findfa(u) != findfa(v)) {
fa[findfa(u)] = findfa(v);
ans += w; cnt++;
if (cnt == n - 1)break;
}
}
return ans;
} void addedge(int u, int v, int w) {
edge[tot].u = u; edge[tot].v = v; edge[tot++].w = w * 2 + valnode[u] + valnode[v];
}
int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(m); int minn = inf;
for (int i = 1; i <= n; i++)rdint(valnode[i]), minn = min(minn, valnode[i]);
for (int i = 1; i <= m; i++) {
int u, v, w; rdint(u); rdint(v); rdint(w);
addedge(u, v, w); addedge(v, u, w);
}
cout << kruskal()+minn << endl;
return 0;
}
[USACO08NOV]安慰奶牛Cheering up the Cow BZOJ 1232 Kruskal的更多相关文章
- P2916 [USACO08NOV]安慰奶牛Cheering up the Cow
往奶牛里打气 题目评级不难. 感觉思路有值得借鉴的地方.(虽然少,毕竟积沙成塔吗qwq) 很容易看出来,是要求最小生成树的. 然后生成树的计算方式不一样. 我们考虑拼接(感觉大部分oi都可以使用类似的 ...
- 安慰奶牛Cheering up the Cow
传送门 一次a就很开心 可以当作kruskal模板题(orz --------------------------------------------------------------------- ...
- 【题解】P2916 [USACO08NOV]安慰奶牛Cheering up the Cow-C++
原题传送门 这道题用最小生成树来完成,我选用的是kruskal(克鲁斯卡尔)来完成.这道题目在克鲁斯卡尔模板的基础上,有变动的地方只有2处:1.因为必须从一个点出发,而最小生成树最后会让所有点都连通, ...
- BZOJ 1232 Kruskal
思路: 跟昨天的考试题特别像-.. 就是裸的Kruskal 把边权设为连接的两个点的点权之和加上边权*2 搞定 //By SiriusRen #include <cstdio> #incl ...
- BZOJ 1232 安慰奶牛题解
题目传送门:BZOJ 1232 这是一个边权和点权结合在一起的题,但是因为要从当前点出发并回到原点,所以每个边都被经过了两次,节点至少被经过一次,所以我们将边权重新赋值,所以推出 那么遍历之后,并不是 ...
- BZOJ1232: [Usaco2008Nov]安慰奶牛cheer
1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 578 Solved: 403[Submi ...
- 1232: [Usaco2008Nov]安慰奶牛cheer
1232: [Usaco2008Nov]安慰奶牛cheer Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 612 Solved: 431[Submi ...
- 算法笔记_067:蓝桥杯练习 算法训练 安慰奶牛(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是 ...
- [bzoj1232][Usaco2008Nov]安慰奶牛cheer_Kruskal
安慰奶牛 cheer bzoj-1232 Usaco-2008 Nov 题目大意:给定一个n个点,m条边的无向图,点有点权,边有边权.FJ从一个点出发,每经过一个点就加上该点点权,每经历一条边就加上该 ...
随机推荐
- 【Java】java.util.Objects 源码学习
2017-02-10 by 安静的下雪天 http://www.cnblogs.com/quiet-snowy-day/p/6387321.html 本篇概要 Objects 与 Object ...
- 问题:oracle LISTAGG 连接字符串;结果:Oracle 连接字符串的方法
Oracle 连接字符串的方法 方法一:wmsys.wm_concat(column) 介绍:其函数在Oracle 10g推出,在10g版本中,返回字符串类型,在11g版本中返回clob类型.括号里面 ...
- IOS 屏幕尺寸
型号 屏幕尺寸(英寸) 分辨率(pt) 像素分辨率(px)iPhone 3G 3.5 320*480 480x320iPhone 3GS 3.5 320*480 480x320iPhone4 3. ...
- struts2学习笔记(2)action多个方法的动态调用
①在struts.xml中的action添加method <action name="addhelloworld" method="add" class= ...
- maven手动安装oracle驱动到仓库
1. 2.打开http://maven.jahia.org/maven2/一步步打开找到 我需要的版本 https://devtools.jahia.com/nexus/content/groups/ ...
- ListView---复杂的listview显示
1 . 初始化数据 private void fillData() { ll_loading.setVisibility(View.VISIBLE); // 显示进度 new Thread() { p ...
- 关于android中,菜单按钮点击事件首次执行之后再次执行需要双击按钮的问题
有时候在获取事件的时候,需要双击才能获取,解决方法很简单,把返回值设为true,那么这个事件就不会再分发了,我预计是设为其他值会继续分发,造成事件的相应混乱
- Codeforces 960F 线段树
题意:https://blog.csdn.net/qq_39809664/article/details/79871282 思路:我们考虑LIS的状态转移,对于这个题,假设现在扫描到的边是(u, v, ...
- MyBatis配置Setting详细说明
该表格转载自http://blog.csdn.net/summer_yuxia/article/details/53169227 setting是指定MyBatis的一些全局配置属性,这是MyBati ...
- GOOGLE机器学习速成班
地址:https://developers.google.cn/machine-learning/crash-course/ 不用***就可以学习.