Time Limit: 1 Sec  Memory Limit: 162 MB

Description

windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数,N。

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

HINT

【数据规模和约定】

100%的数据,满足 1 <= N <= 1000 。

SOLUTION

  样例中每一列都是由循环节组成的,比如第一列1-2-3,第二列2-3-1,第三列3-1-2,第四列4-5……那么我们可以知道,如果原数列当中的一个数为i,i所在列的循环节长度为L,那么在经过k*L次变换之后,原来i所在的那一列的数字又将变成i。若要使数列所有位都变回原装态,就要使排列的行数Lines是所有循环节长度的整数倍。

  如果设循环节长度分别为L1,L2,L2,......,Ln,那么Lines=LCM(L1,L2,L3,......,Ln)。

  至此,问题被转化成了:给你一个N,问你任意一坨循环节长度的LCM是N,有多少种情况。

  预处理把整数转化为素数幂次的积,然后记忆化搜索。

var prime:array[..]of int64;
f:array[..,..]of int64;
n,sum:int64; function p(x:int64):boolean;
var i:longint;
begin
for i:= to sum do
if x mod prime[i]= then exit(false);
exit(true);
end; procedure main;
var i:longint;
begin
for i:= to n do
if p(i) then
begin
inc(sum);
prime[sum]:=i;
end;
end; function solve(step,n:int64):int64;
var pow:int64;
begin
if step>sum then exit();
if f[step,n]>= then exit(f[step,n]);
solve:=;
pow:=prime[step];
while pow<=n do
begin
inc(solve,solve(step+,n-pow));
pow:=pow*prime[step];
end;
inc(solve,solve(step+,n));
f[step,n]:=solve;
end; procedure intt;
begin
assign(input,'game.in');
assign(output,'game.out');
reset(input);
rewrite(output);
end; procedure outt;
begin
close(input);
close(output);
end; begin
intt;
sum:=;
readln(n);
fillchar(f,sizeof(f),char(-));
main;
writeln(solve(,n));
outt;
end.

[SCOI2009]游戏的更多相关文章

  1. SCOI2009游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] ...

  2. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  3. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  4. 【BZOJ1025】[SCOI2009]游戏(动态规划)

    [BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...

  5. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  6. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

  7. 【bzoj1025】[SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1987  Solved: 1289[Submit][Status] ...

  8. BZOJ_1025_[SCOI2009]游戏_DP+置换+数学

    BZOJ_1025_[SCOI2009]游戏_DP+置换 Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按 顺序1 ...

  9. BZOJ1025: [SCOI2009]游戏

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  10. 1025: [SCOI2009]游戏 - BZOJ

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

随机推荐

  1. 关闭一个winform窗体刷新另外一个

    例如Form1是你的主窗体,然后Form2是你的要关闭那个窗体,在Form1中SHOW FORM2的窗体那里加上一句f2.FormClosed += new FormClosedEventHandle ...

  2. JSP Ajax

    html代码: <!DOCTYPE html> <html> <script> function display() { var div=document.getE ...

  3. python(一)入门

    1.软件环境安装和配置 首先下载属于你的操作系统的对应的python安装包 2.傻瓜化下一步下一步 我直接勾选了配置python到path变量 然后完成 3.cmd命令行中测试一把 表示环境配置成功 ...

  4. iOS之多线程浅谈

    1)并发和并行的区别 在软件开发中不可避免的会遇到多线程的问题,在iOS客户端开发(或者.NET的winform或者wpf这样的cs程序)中就更不可避免的会用到多线程,在bs类型的web项目中要考虑一 ...

  5. JS获得QQ号码的昵称,头像,生日

    这篇文章主要介绍了JS获得QQ号码的昵称,头像,生日的简单实例,有需要的朋友可以参考一下 http://r.qzone.qq.com/cgi-bin/user/cgi_personal_card?ui ...

  6. Python的设计模式学习

    1.工厂模式 #encoding=utf-8 __author__ = 'kevinlu1010@qq.com' class ADD(): def getResult(self,*args): ret ...

  7. Convert.ToString和ToString的区别

    Convert.ToString能处理字符串为null的情况,不抛出异常. ToString方法不能处理字符串为null的情况,会抛出异常.如:“未将对象引用设置到对象的实例”.

  8. Oracle客户端PL_SQL的安装

    Oracle数据库的操作大多还是在客户端完成的,因此在众多的客户端软件中我选择了PL_SQL,一下谈谈PL_SQL的基本安装和操作,以及在操作中碰到的一些问题: 1. 首先下载PL_SQL客户端软件, ...

  9. BZOJ 3955 Surely You Congest 解题报告

    首先,我们可以求出源为 $1$ 号点的最短路图以及各个点到 $1$ 号点的最短路. 然后我们考虑那些距离不同的点,是一定不会发生拥堵现象的. 然后我们就只需要考虑那些距离相同的点,就相当于做一个最大流 ...

  10. nginx server_参数配置总结(转)

    转:http://onlyzq.blog.51cto.com/1228/535279 Nginx中的server_name指令主要用于配置基于名称的虚拟主机,server_name指令在接到请求后的匹 ...