Polya定理应用实例
关于Polya原理的应用经典实例:
问题:用两种颜色去染排成一个圈的6个棋子,如果通过旋转得到只算作一种。问有多少种染色状态。
解:先将棋子表上号:
1
6 2
5 3
4
那么把所有通过旋转m(m大于等于0小于等于5)步的写出来:
1 6 5
6 2 5 1 4 6
5 3 4 2 3 1
4 3 2
(m=0) (m=1) (m=2)
4 3 2
3 5 2 4 1 3
2 6 1 5 6 4
1 6 5
(m=3) (m=4) (m=5)
然后写出每种的置换群:
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 2 3 4 5 6 6 1 2 3 4 5 5 6 1 2 3 4
m= 0 m=1 m=2
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
4 5 6 1 2 3 3 4 5 6 1 2 2 3 4 5 6 1
m=3 m=4 m=5
(第一行是原来每位的数字,后一行为现在每位数字)
化简:
(1)(2)(3)(4)(5)(6) (1,6,5,4,3,2) (1,5,3)(2,6,4)
(1,4)(2,5)(3,6) (1,3,5)(2,4,6) (1,2,3,4,5,6)
(每个数对应下一个数,接着再找下一个数的对应数,遇到循环加括号)
最后,根据Polya原理:
Answer=(2^6+2^1+2^2+2^3+2^2+2^1)/6=14
(2表示两种颜色,幂表示每种的括号数,除以6表示有6种)
Polya定理应用实例的更多相关文章
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- 【群论】polya定理
对Polya定理的个人认识 我们先来看一道经典题目: He's Circles(SGU 294) 有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...
- [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...
- HDU 3923 Invoker(polya定理+逆元)
Invoker Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 122768/62768 K (Java/Others)Total Su ...
- Polya定理
http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...
- POJ 2409 Let it Bead(Polya定理)
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <std ...
- POJ 1286 Necklace of Beads(Polya定理)
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: ( ...
- 百练_2409 Let it Bead(Polya定理)
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...
- polya定理小结
polya的精髓就在与对循环节的寻找,其中常遇到的问题就是项链染色类问题. 当项链旋转时有n种置换,循环节的个数分别是gcd(n, i); 当项链翻转时有n种置换,其中当项链珠子数位奇数时,循环节的个 ...
随机推荐
- nmap的理解与利用(初级)
在命令窗口下输入命令等待,可以用回车来查看进度 nmap进行探测之前要把域名通过dns服务器解析为ip地址,我们也可以使用指定的dns服务器进行解析. nmap --dns-servers 主机地址 ...
- Mybatis入门Demo(单表的增删改查)
1.Mybatis 什么是Mybatis: mybatis是一个持久层框架,用java编写的 它封装了jdbc操作的很多细节,使开发者只需要关注sql语句本身,而无需关注注册驱动.创建连接等繁杂过程 ...
- 获取网页url中的参数
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- jmeter进行分布式压测过程与 注意事项
jmeter命令行运行但是是单节点下的, jmeter底层用java开发,耗内存.cpu,如果项目要求大并发去压测服务端的话,jmeter单节点难以完成大并发的请求,这时就需要对jmeter进行分布式 ...
- NIO非阻塞网络编程原理
NIO非阻塞网络编程原理 1.NIO基本介绍 Java NIO 全称 java non-blocking IO,是指 JDK 提供的新 API.从 JDK1.4 开始,Java 提供了一系列改进的 输 ...
- 在不同情况下connect失败和ping不通的数据分析
- TCP随笔
目录 前言 正文 time_wait和rst fin与连接关闭 nagel和ack延迟算法 滑动窗口与拥塞控制 文末 总结 测试代码 前言 网上已经有大量关于tcp的文章,感觉作为一名技术人员,不写一 ...
- 从零开始学Java (五)条件选择
if switch while do while for break continue 这块对于有语言基础的人来说可以跳过了. 注意有个equals方法. 1 public class Main { ...
- SpringMVC听课笔记(十五:SpringMVC 运行流程)
1. 图 一般的会按照红线标注的方向去行进,但是请求静态资源,或者出现异常等,会出现其他路径 2.
- web.xml 监听器
一.作用 Listener就是在application,session,request三个对象创建.销毁或者往其中添加修改删除属性时自动执行代码的功能组件. Listener是Servlet的监听器, ...