Polya定理应用实例
关于Polya原理的应用经典实例:
问题:用两种颜色去染排成一个圈的6个棋子,如果通过旋转得到只算作一种。问有多少种染色状态。
解:先将棋子表上号:
1
6 2
5 3
4
那么把所有通过旋转m(m大于等于0小于等于5)步的写出来:
1 6 5
6 2 5 1 4 6
5 3 4 2 3 1
4 3 2
(m=0) (m=1) (m=2)
4 3 2
3 5 2 4 1 3
2 6 1 5 6 4
1 6 5
(m=3) (m=4) (m=5)
然后写出每种的置换群:
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 2 3 4 5 6 6 1 2 3 4 5 5 6 1 2 3 4
m= 0 m=1 m=2
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
4 5 6 1 2 3 3 4 5 6 1 2 2 3 4 5 6 1
m=3 m=4 m=5
(第一行是原来每位的数字,后一行为现在每位数字)
化简:
(1)(2)(3)(4)(5)(6) (1,6,5,4,3,2) (1,5,3)(2,6,4)
(1,4)(2,5)(3,6) (1,3,5)(2,4,6) (1,2,3,4,5,6)
(每个数对应下一个数,接着再找下一个数的对应数,遇到循环加括号)
最后,根据Polya原理:
Answer=(2^6+2^1+2^2+2^3+2^2+2^1)/6=14
(2表示两种颜色,幂表示每种的括号数,除以6表示有6种)
Polya定理应用实例的更多相关文章
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- 【群论】polya定理
对Polya定理的个人认识 我们先来看一道经典题目: He's Circles(SGU 294) 有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...
- [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...
- HDU 3923 Invoker(polya定理+逆元)
Invoker Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 122768/62768 K (Java/Others)Total Su ...
- Polya定理
http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...
- POJ 2409 Let it Bead(Polya定理)
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <std ...
- POJ 1286 Necklace of Beads(Polya定理)
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: ( ...
- 百练_2409 Let it Bead(Polya定理)
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...
- polya定理小结
polya的精髓就在与对循环节的寻找,其中常遇到的问题就是项链染色类问题. 当项链旋转时有n种置换,循环节的个数分别是gcd(n, i); 当项链翻转时有n种置换,其中当项链珠子数位奇数时,循环节的个 ...
随机推荐
- 与数论的厮守05:gcd(a,b)=gcd(b,a mod b)的证明
\[设c=gcd(a,b),那么a可以表示为mc,b可以表示为nc的形式.然后令a=kb+r,那么我们就\\ 只需要证明gcd(b,r)=c即可.{\because}r=a-kb=mc-knc,{\t ...
- 干货!上古神器 sed 教程详解,小白也能看的懂
目录: 介绍工作原理正则表达式基本语法数字定址和正则定址基本子命令实战练习 介绍 熟悉 Linux 的同学一定知道大名鼎鼎的 Linux 三剑客,它们是 grep.awk.sed,我们今天要聊的主角就 ...
- 转 Fiddler3 使用技巧
Fiddler3 使用技巧 文章转自:https://www.cnblogs.com/zhengna/category/1466001.html 1.Fiddler抓不到包怎么解决 (1)先确定是H ...
- MySQL调优性能监控之performance schema
一.performance_schema的介绍 performance:性能 schema:图(表)示,以大纲或模型的形式表示计划或理论. MySQL的performance schema 用于监控M ...
- 每天学一点 Vue3(一) CND方式的安装以及简单使用
简介 感觉vue3的新特性很舒服,这样才是写软件的感觉嘛.打算用Vue实现自己的一些想法. Vue3还有几个必备库,比如Vue-Router(负责路由导航).Vuex(状态管理.组件间通信),还有第三 ...
- protoc-gen-validate (PGV)
https://github.com/envoyproxy/protoc-gen-validate This project is currently in alpha. The API should ...
- 截屏转base64 调用栈
房产经纪人页面错误信息采集方案 https://mp.weixin.qq.com/s/tznlHs3XRwJFQtGiCwp15w function captureScreen() { var ...
- git commit前检测husky与pre-commit 提交钩子
git commit前检测husky与pre-commit git commit前检测husky与pre-commit - 简书 https://www.jianshu.com/p/f0d31f92b ...
- Python学习【第5篇】:数据类型和变量总结
字符串,数字,列表,元组,字典 可变不可变 1.可变:列表 如: p.p1 { margin: 0; font: 11px Menlo; color: rgba(0, 0, 0, 1); backgr ...
- StreamingContext详解,输入DStream和Reveiver详解
StreamingContext详解,输入DStream和Reveiver详解 一.StreamingContext详解 1.1两种创建StreamingContext的方式 1.2SteamingC ...