二维 \(\mathcal{ST}\) 表,可以解决二维 \(\mathcal{RMQ}\) 问题。这里不能带修改,如果要修改,就需要二维线段树解决了。

上一道例题吧 ZOJ2859

类比一维 \(\mathcal{ST}\) 表,我们定义数组 \(f[i][j][k][p]\) 表示从 \((i,j)\) 往下 \(2^k\) 个元素,往右 \(2^p\) 个元素的最值。

建表的话,同样类比一维 \(\mathcal{ST}\) 表,外层两个循环 \(\mathcal{k}\) 和 \(\mathcal{p}\) , 然后内层取最值就行了。要注意的是,\(\mathcal{k}\) 和 \(\mathcal{p}\) 要从 \(0\) 开始循环,因为一行或者一列的情况也要维护。

查询的话,就把一个大矩形分成四个小矩形覆盖住就好了。

空间复杂度 \(\mathcal{O(n^2log^2n)}\)代码在这里

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 302 int n,T;
int val[N][N];
int f[N][N][9][9]; void prework(){
for(int i=0;i<9;i++){
for(int j=0;j<9;j++){
if(i==0 and j==0) continue;
for(int k=1;k<=n-(1<<i)+1;k++){
for(int p=1;p<=n-(1<<j)+1;p++){
if(i==0)
f[k][p][i][j]=std::min(f[k][p][i][j-1],f[k][p+(1<<j-1)][i][j-1]);
else
f[k][p][i][j]=std::min(f[k][p][i-1][j],f[k+(1<<i-1)][p][i-1][j]);
}
}
}
}
} int query(int r1,int c1,int r2,int c2){
int k1=log2(r2-r1+1);
int k2=log2(c2-c1+1);
return std::min(f[r1][c1][k1][k2],std::min(f[r2-(1<<k1)+1][c1][k1][k2],std::min(f[r1][c2-(1<<k2)+1][k1][k2],f[r2-(1<<k1)+1][c2-(1<<k2)+1][k1][k2])));
} void file(){
freopen("in.txt","r",stdin);
freopen("out2.txt","w",stdout);
} signed main(){
//file();
scanf("%d",&T);
while(T--){
memset(f,0x3f,sizeof f);
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
scanf("%d",&val[i][j]),f[i][j][0][0]=val[i][j];
}
prework();
int q; scanf("%d",&q);
while(q--){
int r1,r2,c1,c2;
scanf("%d%d%d%d",&r1,&c1,&r2,&c2);
printf("%d\n",query(r1,c1,r2,c2));
}
}
}

我们有一种把空间复杂度优化到 \(\mathcal {O(n^2logn)}\) 的方法,记 \(\mathcal{f[i][j][k]}\) 表示以点 \((i,j)\) 为左上角,边长为 \(\mathcal{2^k}\) 的正方形所要维护的最值。

考虑查询,设查询矩形的左上角和右下角坐标分别为 \((r1,c1)\) 和 \((r2,c2)\)。且假设 \(r2-r1>c2-c1\)。

因为我们维护的是一个正方形内的最值,所以不能 \(\mathcal{O(1)}\) 的查询。而是要这样

for(int i=r1;i<=r2-(1<<k1)+1;i++)
ans=min(ans,min(f[c1][i][k1],f[c2-(1<<k1)][i][k1]))

其实这样是能被一个宽度为 \(1\) 的长方形把查询复杂度卡成 \(O(n)\) 的,但毕竟空间复杂度小了一个 \(\mathcal{log}\) 倍,对于一些内存紧张的题目,这种做法还是能起到一定效果的。

下面是 \(\mathcal{ZOJ}\) \(2859\) 第二种做法的代码。

上一下两种方法的对比吧,大家自行比较选择。

第一种:



第二种:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 302 int T;
int n;
int val[N][N];
int f[N][N][9]; void prework(){
for(int i=1;i<9;i++){
for(int k=1;k<=n-(1<<i)+1;k++){
for(int p=1;p<=n-(1<<i)+1;p++){
f[k][p][i]=std::min(f[k][p][i-1],std::min(f[k+(1<<i-1)][p][i-1],std::min(f[k][p+(1<<i-1)][i-1],f[k+(1<<i-1)][p+(1<<i-1)][i-1])));
}
}
}
} int query(int r1,int c1,int r2,int c2){
int k1=log2(r2-r1+1);
int k2=log2(c2-c1+1);
if(k1==k2) return std::min(f[r1][c1][k1],std::min(f[r2-(1<<k1)+1][c1][k1],std::min(f[r1][c2-(1<<k1)+1][k1],f[r2-(1<<k1)+1][c2-(1<<k1)+1][k1])));
if(k1<k2){
int minp=0x3f3f3f3f;
for(int i=c1;i<=c2-(1<<k1)+1;i+=(1<<k1)) minp=std::min(minp,std::min(f[r1][i][k1],f[r2-(1<<k1)+1][i][k1]));
minp=std::min(minp,std::min(f[r1][c2-(1<<k1)+1][k1],f[r2-(1<<k1)+1][c2-(1<<k1)+1][k1]));
return minp;
}
int minp=0x3f3f3f3f;
for(int i=r1;i<=r2-(1<<k2)+1;i+=(1<<k2)) minp=std::min(minp,std::min(f[i][c1][k2],f[i][c2-(1<<k2)+1][k2]));
minp=std::min(minp,std::min(f[r2-(1<<k2)+1][c1][k2],f[r2-(1<<k2)+1][c2-(1<<k2)+1][k2]));
return minp;
} void file(){
freopen("in.txt","r",stdin);
freopen("out1.txt","w",stdout);
} signed main(){
//file();
scanf("%d",&T);
while(T--){
memset(f,0x3f,sizeof f);
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) scanf("%d",&val[i][j]),f[i][j][0]=val[i][j];
}
prework();
/*for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=0;k<9;k++) printf("i=%d,j=%d,k=%d,f=%d\n",i,j,k,f[i][j][k]);
}
}*/
int q; scanf("%d",&q);
while(q--){
int r1,r2,c1,c2;
scanf("%d%d%d%d",&r1,&c1,&r2,&c2);
printf("%d\n",query(r1,c1,r2,c2));
}
}
return 0;
}

[总结] 二维ST表及其优化的更多相关文章

  1. BZOJ3577:玩手机(最大流,二维ST表)

    Description 现在有一堆手机放在坐标网格里面(坐标从1开始),坐标(i,j)的格子有s_(i,j)个手机. 玩手机当然需要有信号,不过这里的手机与基站与我们不太一样.基站分为两种:发送站和接 ...

  2. BZOJ1047[HAOI2007]理想的正方形——二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...

  3. 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表

    [题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...

  4. 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)

    题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...

  5. Codeforces 713D Animals and Puzzle(二维ST表+二分答案)

    题目链接 Animals and Puzzle 题意  给出一个1e3 * 1e3的01矩阵,给出t个询问,每个询问形如x1,y1,x2,y2 你需要回答在以$(x1, y1)$为左上角,$(x1, ...

  6. [模板]二维ST表

    考试yy二维ST表失败导致爆零. 其实和一维的ST表很像... 也是设$f[i][j][p][q]$为以$(i, j)$为左上角,长为$2^p$,宽为$2^q$的矩形的最大值. 算法流程是先把每一行都 ...

  7. [HNOI2007] 理想正方形 二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  8. hdu2888 二维ST表(RMQ)

    二维RMQ其实和一维差不太多,但是dp时要用四维 /* 二维rmq */ #include<iostream> #include<cstring> #include<cs ...

  9. 数据结构:二维ST表

    POJ2019 我们其实是很有必要把ST算法拓展到二维的,因为二维的RMQ问题还是不少的 int N,B,K; ]; int val[maxn][maxn]; ][]; ][]; 这里的N是方阵的长宽 ...

随机推荐

  1. Android简易实战教程--第二话《两种进度条》

    点击按钮模拟进度条下载进度,"下载"完成进度条消失. 代码如下: xml: <?xml version="1.0" encoding="utf- ...

  2. ajax核心技术1---XMLHttpRequset对象的使用

    AJAX即"Asynchronous Javascript And XML"(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术.AJAX = 异步 Ja ...

  3. 学习笔记6-Android查看应用输出的错误信息 如何部署应用到真实手机 发布软件

    查看应用输出的错误信息 1.      通过LogCat窗口查看信息 右上角图标可以筛选不同级别的信息(比如info等). 右上角的+可以进行信息筛选 把应用部署到真实手机 1.      要把手机的 ...

  4. IBM SPSS 实习总结

    2015过完年,我知道导师要出国了,自己也算是水了一个idea 的论文.希望研二能找个实习,早听说西安IBM这边有学长在里面实习过,2月底联系了一下简历就塞了过去.面试就在锦业一路软件园他们上班的地方 ...

  5. 【一天一道LeetCode】#112. Path Sum

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  6. UNIX环境高级编程——创建与打开IPC通道

    创建或打开一个IPC对象的三个getXXX函数的第一个参数key是类型为key_t的IPC键,返回值identifier是一个整数标识符.该标识符不同于ftok函数的id参数.对于key值,应用程序有 ...

  7. UNIX环境高级编程——守护进程列表

    amd:自动安装NFS(网络文件系统)守侯进程apmd:高级电源治理Arpwatch:记录日志并构建一个在LAN接口上看到的以太网地址和ip地址对数据库Autofs:自动安装治理进程automount ...

  8. Dynamics CRM2013 去除界面顶部黄色的CRM For Outlook条框

    Dynamics CRM2013中每次打开系统页面上方都会有个黄条看着很是烦人,效果如下图 庆幸的是系统提供了关闭的开关,设置-管理-系统设置,把"设置CRM For Outlook消息是否 ...

  9. 深入Java关键字instanceof

    深入Java关键字instanceof   instanceof关键字用于判断一个引用类型变量所指向的对象是否是一个类(或接口.抽象类.父类)的实例.   举个例子: public interface ...

  10. XML Publisher Report Issues, Recommendations and Errors

    In this Document   Purpose   Questions and Answers   References APPLIES TO: Oracle Process Manufactu ...