二维 \(\mathcal{ST}\) 表,可以解决二维 \(\mathcal{RMQ}\) 问题。这里不能带修改,如果要修改,就需要二维线段树解决了。

上一道例题吧 ZOJ2859

类比一维 \(\mathcal{ST}\) 表,我们定义数组 \(f[i][j][k][p]\) 表示从 \((i,j)\) 往下 \(2^k\) 个元素,往右 \(2^p\) 个元素的最值。

建表的话,同样类比一维 \(\mathcal{ST}\) 表,外层两个循环 \(\mathcal{k}\) 和 \(\mathcal{p}\) , 然后内层取最值就行了。要注意的是,\(\mathcal{k}\) 和 \(\mathcal{p}\) 要从 \(0\) 开始循环,因为一行或者一列的情况也要维护。

查询的话,就把一个大矩形分成四个小矩形覆盖住就好了。

空间复杂度 \(\mathcal{O(n^2log^2n)}\)代码在这里

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 302 int n,T;
int val[N][N];
int f[N][N][9][9]; void prework(){
for(int i=0;i<9;i++){
for(int j=0;j<9;j++){
if(i==0 and j==0) continue;
for(int k=1;k<=n-(1<<i)+1;k++){
for(int p=1;p<=n-(1<<j)+1;p++){
if(i==0)
f[k][p][i][j]=std::min(f[k][p][i][j-1],f[k][p+(1<<j-1)][i][j-1]);
else
f[k][p][i][j]=std::min(f[k][p][i-1][j],f[k+(1<<i-1)][p][i-1][j]);
}
}
}
}
} int query(int r1,int c1,int r2,int c2){
int k1=log2(r2-r1+1);
int k2=log2(c2-c1+1);
return std::min(f[r1][c1][k1][k2],std::min(f[r2-(1<<k1)+1][c1][k1][k2],std::min(f[r1][c2-(1<<k2)+1][k1][k2],f[r2-(1<<k1)+1][c2-(1<<k2)+1][k1][k2])));
} void file(){
freopen("in.txt","r",stdin);
freopen("out2.txt","w",stdout);
} signed main(){
//file();
scanf("%d",&T);
while(T--){
memset(f,0x3f,sizeof f);
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
scanf("%d",&val[i][j]),f[i][j][0][0]=val[i][j];
}
prework();
int q; scanf("%d",&q);
while(q--){
int r1,r2,c1,c2;
scanf("%d%d%d%d",&r1,&c1,&r2,&c2);
printf("%d\n",query(r1,c1,r2,c2));
}
}
}

我们有一种把空间复杂度优化到 \(\mathcal {O(n^2logn)}\) 的方法,记 \(\mathcal{f[i][j][k]}\) 表示以点 \((i,j)\) 为左上角,边长为 \(\mathcal{2^k}\) 的正方形所要维护的最值。

考虑查询,设查询矩形的左上角和右下角坐标分别为 \((r1,c1)\) 和 \((r2,c2)\)。且假设 \(r2-r1>c2-c1\)。

因为我们维护的是一个正方形内的最值,所以不能 \(\mathcal{O(1)}\) 的查询。而是要这样

for(int i=r1;i<=r2-(1<<k1)+1;i++)
ans=min(ans,min(f[c1][i][k1],f[c2-(1<<k1)][i][k1]))

其实这样是能被一个宽度为 \(1\) 的长方形把查询复杂度卡成 \(O(n)\) 的,但毕竟空间复杂度小了一个 \(\mathcal{log}\) 倍,对于一些内存紧张的题目,这种做法还是能起到一定效果的。

下面是 \(\mathcal{ZOJ}\) \(2859\) 第二种做法的代码。

上一下两种方法的对比吧,大家自行比较选择。

第一种:



第二种:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 302 int T;
int n;
int val[N][N];
int f[N][N][9]; void prework(){
for(int i=1;i<9;i++){
for(int k=1;k<=n-(1<<i)+1;k++){
for(int p=1;p<=n-(1<<i)+1;p++){
f[k][p][i]=std::min(f[k][p][i-1],std::min(f[k+(1<<i-1)][p][i-1],std::min(f[k][p+(1<<i-1)][i-1],f[k+(1<<i-1)][p+(1<<i-1)][i-1])));
}
}
}
} int query(int r1,int c1,int r2,int c2){
int k1=log2(r2-r1+1);
int k2=log2(c2-c1+1);
if(k1==k2) return std::min(f[r1][c1][k1],std::min(f[r2-(1<<k1)+1][c1][k1],std::min(f[r1][c2-(1<<k1)+1][k1],f[r2-(1<<k1)+1][c2-(1<<k1)+1][k1])));
if(k1<k2){
int minp=0x3f3f3f3f;
for(int i=c1;i<=c2-(1<<k1)+1;i+=(1<<k1)) minp=std::min(minp,std::min(f[r1][i][k1],f[r2-(1<<k1)+1][i][k1]));
minp=std::min(minp,std::min(f[r1][c2-(1<<k1)+1][k1],f[r2-(1<<k1)+1][c2-(1<<k1)+1][k1]));
return minp;
}
int minp=0x3f3f3f3f;
for(int i=r1;i<=r2-(1<<k2)+1;i+=(1<<k2)) minp=std::min(minp,std::min(f[i][c1][k2],f[i][c2-(1<<k2)+1][k2]));
minp=std::min(minp,std::min(f[r2-(1<<k2)+1][c1][k2],f[r2-(1<<k2)+1][c2-(1<<k2)+1][k2]));
return minp;
} void file(){
freopen("in.txt","r",stdin);
freopen("out1.txt","w",stdout);
} signed main(){
//file();
scanf("%d",&T);
while(T--){
memset(f,0x3f,sizeof f);
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) scanf("%d",&val[i][j]),f[i][j][0]=val[i][j];
}
prework();
/*for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=0;k<9;k++) printf("i=%d,j=%d,k=%d,f=%d\n",i,j,k,f[i][j][k]);
}
}*/
int q; scanf("%d",&q);
while(q--){
int r1,r2,c1,c2;
scanf("%d%d%d%d",&r1,&c1,&r2,&c2);
printf("%d\n",query(r1,c1,r2,c2));
}
}
return 0;
}

[总结] 二维ST表及其优化的更多相关文章

  1. BZOJ3577:玩手机(最大流,二维ST表)

    Description 现在有一堆手机放在坐标网格里面(坐标从1开始),坐标(i,j)的格子有s_(i,j)个手机. 玩手机当然需要有信号,不过这里的手机与基站与我们不太一样.基站分为两种:发送站和接 ...

  2. BZOJ1047[HAOI2007]理想的正方形——二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...

  3. 【CodeForces】713 D. Animals and Puzzle 动态规划+二维ST表

    [题目]D. Animals and Puzzle [题意]给定n*m的01矩阵,Q次询问某个子矩阵内的最大正方形全1子矩阵边长.n,m<=1000,Q<=10^6. [算法]动态规划DP ...

  4. 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)

    题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...

  5. Codeforces 713D Animals and Puzzle(二维ST表+二分答案)

    题目链接 Animals and Puzzle 题意  给出一个1e3 * 1e3的01矩阵,给出t个询问,每个询问形如x1,y1,x2,y2 你需要回答在以$(x1, y1)$为左上角,$(x1, ...

  6. [模板]二维ST表

    考试yy二维ST表失败导致爆零. 其实和一维的ST表很像... 也是设$f[i][j][p][q]$为以$(i, j)$为左上角,长为$2^p$,宽为$2^q$的矩形的最大值. 算法流程是先把每一行都 ...

  7. [HNOI2007] 理想正方形 二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  8. hdu2888 二维ST表(RMQ)

    二维RMQ其实和一维差不太多,但是dp时要用四维 /* 二维rmq */ #include<iostream> #include<cstring> #include<cs ...

  9. 数据结构:二维ST表

    POJ2019 我们其实是很有必要把ST算法拓展到二维的,因为二维的RMQ问题还是不少的 int N,B,K; ]; int val[maxn][maxn]; ][]; ][]; 这里的N是方阵的长宽 ...

随机推荐

  1. Windows Server2008R2、2012R2重置系统开机登陆密码

    平时用的虚拟机太多导致经常会忘记密码,这里分享两个链接,分别对应的是08R2和12R2重置密码的方法. 08R2:http://ucweb.blog.51cto.com/4042188/962284 ...

  2. [Error]Can't install RMagick 2.13.4. You must have ImageMagick 6.4.9 or later.

    gem 安装ruby插件的时候 出现了一个错误 Installing rmagick 2.13.4 with native extensions Gem::Installer::ExtensionBu ...

  3. Java学习从菜鸟变大鸟之三 多线程中Thread 和Runnable的区别与运用

    多线程机制是java中的一个特点,掌握它对后面的知识的理解至关重要,是java工程师的必备知识,多线程指在单个程序中可以运行多个不同的线程执行的不同的任务,线程是一个程序内部的顺序控制流.进程是静态的 ...

  4. JAVA之旅(二十)—HashSet,自定义存储对象,TreeSet,二叉树,实现Comparator方式排序,TreeSet小练习

    JAVA之旅(二十)-HashSet,自定义存储对象,TreeSet,二叉树,实现Comparator方式排序,TreeSet小练习 我们继续说一下集合框架 Set:元素是无序(存入和取出的顺序不一定 ...

  5. java Domj4读取xml文件加强训练案例

    需求:给出一段xml文件.要求按照鸳鸯输出. xml文件代码如下: <?xml version="1.0" encoding="utf-8"?> & ...

  6. 2016 苹果全球开发者大会(WWDC)

    纵观WWDC 2016开发者大会的全部内容,尽管本次大会没有那些新的产品发布,不过能让各位果粉的肾留到秋天,那也是苹果公司对各位果粉的关爱啊.但是对iOS开发者而言,新发布的技术还是比较不错的.主要内 ...

  7. ant的设置properties

    特点 大小写敏感: 不可改变,先到先得,谁先设定,之后的都不能改变. 怎样设置 1 .设置 name 和 value 属性值,比如: <property name="srcdir&qu ...

  8. javascript语法之函数案例练习

    需求:文本框内输入月份,弹窗提示本月天数. 代码如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&qu ...

  9. javascript语法之循环语句

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. Linux Shell脚本攻略学习总结:二

    比较与测试 程序中的流程控制是由比较和测试语句来处理的. 我们可以用if,if else 以及逻辑运算符来执行测试,而用一些比较运算符来比较数据项.另外,有一个test 命令也可以用来进行测试.让我们 ...