Description

已知多项式方程:

a0+a1x+a2x2+...+an*xn=0

求这个方程在[1,m]内的整数解(n和m均为正整数)。

解题报告:

这题比较诡,看到高精度做不了,就要想到取模,然后很容易发现是有问题的,所以要多取几个增加正确性,然后就开始枚举解,对于合法的解一定是对所有你选的质数都成立。

对于求这个多项式的值可以用秦九韶算法,这里不多做赘述.

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=105,M=1000005;
int pri[6]={30011,11261,14843,19997,10007,21893},n,m,a[N][6];
bool vis[M/10][6];
void gi(int i){
char ch=getchar();int f=1;
while(ch>'9' || ch<'0'){
if(ch=='-')f=-1;ch=getchar();
}
while(ch>='0' && ch<='9'){
for(int k=0;k<6;k++)
a[i][k]=a[i][k]*10+ch-48,a[i][k]%=pri[k];
ch=getchar();
}
for(int k=0;k<6;k++)a[i][k]*=f;
}
int ans[M],num=0;
bool judge(int x,int k){
int ret=0;
for(int i=n;i>=1;i--)
ret=x*ret%pri[k]+a[i][k],ret%=pri[k];
return ret==0;
}
bool check(int x){
for(int i=0;i<6;i++)
if(vis[x%pri[i]][i]==0)return false;
return true;
}
void work()
{
scanf("%d%d",&n,&m);n++;
for(int i=1;i<=n;i++)gi(i);
for(int i=0;i<6;i++)
for(int j=0;j<pri[i];j++)
vis[j][i]=judge(j,i);
for(int i=1;i<=m;i++)
if(check(i))ans[++num]=i;
printf("%d\n",num);
for(int i=1;i<=num;i++)printf("%d\n",ans[i]);
} int main(){work();return 0;}

bzoj 3751: [NOIP2014]解方程的更多相关文章

  1. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  2. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  3. bzoj 3751: [NOIP2014]解方程【数学】

    --我真是太非了,自己搞了7个质数都WA,从别人那粘5个质数就A了-- 就是直接枚举解,用裴蜀定理计算是否符合要求,因为这里显然结果很大,所以我们对多个质数取模看最后是不是都为0 #include&l ...

  4. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  5. 【BZOJ】3751: [NOIP2014]解方程

    题意 求\(\sum_{i=0}^{n} a_i x^i = 0\)在\([1, m]\)内的整数解.(\(0 < n \le 100, |a_i| \le 10^{10000}, a_n \n ...

  6. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  7. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  8. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  9. 【bzoj3751】[NOIP2014]解方程 数论

    题目描述 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 输入 第一行包含2个整数n.m,每两个整数之间用一个空格隔开 ...

随机推荐

  1. iOS开发UIKit框架-可视化编程-XIB

    1. Interface Builder 可视化编程 1> 概述 GUI : 图形用户界面(Graphical User Interface, 简称GUI, 又称图形化界面) 是指采用图形方式显 ...

  2. SpringMVC源码情操陶冶#task-executor解析器

    承接Spring源码情操陶冶-自定义节点的解析.线程池是jdk的一个很重要的概念,在很多的场景都会应用到,多用于处理多任务的并发处理,此处借由spring整合jdk的cocurrent包的方式来进行深 ...

  3. JAVA_SE基础——40.super关键字

    只要this关键字掌握了,super关键字不在话下,因为他们原理都差不多的.. this&super 什么是this,this是自身的一个对象,代表对象本身,可以理解为:指向对象本身的一个指针 ...

  4. 用python实现与小米网关通讯

    python 与小米网关通讯的三块内容: 以下内容的理解需要配合<绿米网关局域网通讯协议>使用 1.监听网关发出的组播信息:(有网关及连接设备的生命信号,事件信息) 2.读取需要获得的信息 ...

  5. Web Api 使用模型验证

    public class Person { public int Id { get; set; } [Required(ErrorMessage = "姓名不能为空啊啊啊!")] ...

  6. CRC 校验

    匠心零度 转载请注明原创出处,谢谢! 说明 上篇RocketMQ(二):RPC通讯介绍了rocketmq的一些rpc细节,其实这些内容不仅仅是rocketmq内容,任何通信模块基本都是类似的,这块内容 ...

  7. python入门(5)使用文件编辑器编写代码并保存执行

    python入门(5)使用文件编辑器编写代码并保存执行 两款文本编辑器: 一个是Sublime Text,免费使用,但是不付费会弹出提示框: 一个是Notepad++,免费使用,有中文界面: 请注意, ...

  8. maven入门(9)Maven常用命令

    Maven常用命令 清理 clean编译 compile打包 package安装 install跳过测试 clean package -Dmaven.test.skip=true

  9. 关于block的循环引用的问题

    在block的循环引用的问题上我们都知道如果在block内部修改外部的变量的时候,要加__block以防止循环引用的问题,但是如果block是当前对象的一个属性的时候,要修改当前对象的一个属性的时候就 ...

  10. Maven使用本地jar包(两种方式)

    有些项目会用到一些Maven库上没有的jar包,这就需要我们自己引入了 这种情况有两种办法: 第一种方式,在pom文件中引用时使用本地路径: 首先把jar包放到项目中: 然后在pom文件中引入: &l ...