3997: [TJOI2015]组合数学

题意:\(n*m:\ n \le 1000\)网格图,每个格子有权值。每次从左上角出发,只能向下或右走。经过一个格子权值-1.至少从左上角出发几次所有权值为0。


容易发现偏序关系

\[x_1 \le x_2, y_1 \le y_2
\]

最少链数=最长反链大小

但是本题每个元素有权值

容易发现,最少链数=最大权值反链的权值

然后我沙茶的写了一个\(O(n^4)\)的DP就T掉了

怒写二维树状数组,A了

其他人怎么辣么快啊,然后发现直接

f[i][j] = max(f[i+1][j-1] + a[i][j], max(f[i][j-1], f[i+1][j]))

这样DP就行了...

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1005;
inline int read() {
char c=getchar(); int x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, m, a[N][N];
namespace bit {
ll c[N][N];
inline void add(int x, int y, ll d) { //printf("-----------d %lld\n",d);
for(int i=x; i; i-=i&-i)
for(int j=y; j<=m; j+=j&-j) c[i][j] = max(c[i][j], d);
}
inline ll cal(int x, int y) {
if(x<1 || x>n || y<1 || y>m) return 0;
ll ans = 0;
for(int i=x; i<=n; i+=i&-i)
for(int j=y; j; j-=j&-j) ans = max(ans, c[i][j]);// printf("c %d %d %lld ans %lld\n", i, j, c[i][j], max(ans, c[i][j]));
return ans;
}
}
int main() {
//freopen("in", "r", stdin);
int T=read();
while(T--) {
n=read(); m=read();
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++) a[i][j] = read(), bit::c[i][j] = 0;
ll ans=0;
for(int i=n; i>=1; i--)
for(int j=1; j<=m; j++) {
ll now = bit::cal(i+1, j-1) + a[i][j];
bit::add(i, j, now);
ans = max(ans, now);
}
printf("%lld\n", ans);
}
}

BZOJ 3997: [TJOI2015]组合数学 [偏序关系 DP]的更多相关文章

  1. bzoj 3997 [TJOI2015]组合数学(DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3997 [题意] 给定一个nm的长方形,每次只能使经过格子权值减1,每次只能向右向下,问 ...

  2. 【BZOJ 3997】 3997: [TJOI2015]组合数学 (DP| 最小链覆盖=最大点独立集)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 919  Solved: 664 Description 给出 ...

  3. BZOJ 3997 [TJOI2015]组合数学(单调DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3997 [题目大意] 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右 ...

  4. BZOJ 3997 TJOI2015 组合数学

    分析一下样例就可以知道,求的实际上是从左下角到右上角的最长路 因为对于任意不在这个最长路的上的点,都可以通过经过最长路上的点的路径将这个点的价值减光 (可以用反证法证明) 之后就是一个非常NOIP的D ...

  5. 3997: [TJOI2015]组合数学

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 247  Solved: 174[Submit][Status ...

  6. 组合数学 - BZOJ 3997 - TJOI2015

    TJOI2015 Problem's Link ---------------------------------------------------------------------------- ...

  7. 【BZOJ】3997: [TJOI2015]组合数学

    题意 \(N \times M\)的网格,一开始在\((1, 1)\)每次可以向下和向右走,每经过一个有数字的点最多能将数字减1,最终走到\((N, M)\).问至少要走多少次才能将数字全部变为\(0 ...

  8. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  9. 【BZOJ3997】[TJOI2015]组合数学(动态规划)

    [BZOJ3997][TJOI2015]组合数学(动态规划) 题面 BZOJ 洛谷 题解 相当妙的一道题目.不看题解我只会暴力网络流 先考虑要求的是一个什么东西,我们把每个点按照\(a[i][j]\) ...

随机推荐

  1. iOS项目——项目开发环境搭建

    在开发项目之前,我们需要做一些准备工作,了解iOS扩展--Objective-C开发编程规范是进行开发的必备基础,学习iOS学习--Xcode9上传项目到GitHub是我们进行版本控制和代码管理的选择 ...

  2. Redis进阶实践之五Redis的高级特性

    一.引言    上一篇文章写了Redis的特征,使用场景,同时也介绍了Redis的基本数据类型,redis的数据类型是操作redis的基础,这个必须好好的掌握.今天我们开始介绍一些Redis的高级特性 ...

  3. vue引入新版 vue-awesome-swiper填坑

    关于新版 vue-awesome-swiper 问题 为什么我的vue-awesome-swiper组件pagination小圆点不显示问题? 为什么我的vue-awesome-swiper不会自动播 ...

  4. C# delegate event func action 匿名方法 lambda表达式

    delegate event action func 匿名方法 lambda表达式 delegate类似c++的函数指针,但是是类型安全的,可以指向多个函数, public delegate void ...

  5. 炫酷线条动画--svg

    我们经常可以在一些页面看到看起来很酷的线条动画,有些可以用css实现,有些css就无能为力了,今天来研究另一种实现方式,svg 如果对svg是什么还不了解的话,可以先去看看svg的基础教程: 一般对于 ...

  6. LNMP安装Let’s Encrypt 免费SSL证书方法:自动安装与手动配置Nginx

    前几天介绍了最新StartSSL免费SSL申请与配置,很多人看到部落介绍SSL证书安装时总是推荐了OneinStack,因为OneinStack提供了一键添加和配置Let's Encrypt 免费SS ...

  7. J.U.C ThreadPoolExecutor解析

    Java里面线程池顶级接口是Executor,但严格意义上讲Executor并不是一个线程池,而是一个线程执行工具,真正的线程池接口是ExecutorService.关系类图如下: 首先Executo ...

  8. 04 整合IDEA+Maven+SSM框架的高并发的商品秒杀项目之高并发优化

    Github:https://github.com/nnngu 项目源代码:https://github.com/nnngu/nguSeckill 关于并发 并发性上不去是因为当多个线程同时访问一行数 ...

  9. CentOS7.3 ARM虚拟机扩容系统磁盘

    由于扩容磁盘的操作非同小可,一旦哪一步出现问题,就会导致分区损坏,数据丢失等一系列严重的问题,因此建议:在进行虚拟机分区扩容之前,一定要备份重要数据文件,并且先在测试机上验证以下步骤,再应用于您的生产 ...

  10. java连接mysql以及增删改查操作

    java连接数据库的代码基本是固定的,步骤过程觉得繁琐些,代码记起来对我来说是闹挺.直接上代码: (温馨提醒:你的项目提前导入连接数据库的jar包才有的以下操作 ) class DBConnectio ...