https://www.luogu.org/problemnew/show/P1962(题目传送)

n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了。这里介绍一种用矩阵快速幂实现的解法:

首先普及一下矩阵乘法:

一个m*q的m行q列的矩阵A*一个q*n的q行n列的矩阵B得到一个m*n的m行n列的矩阵AB,则有:

通俗的讲,就是新矩阵第i行j列的数等于第一个矩阵第i行的q个数分别乘第二个矩阵的第j列的q个数并把它们加起来的和。注意,矩阵乘法满足结合律和分配律,但不满足交换律。

我们可以把第n项F(n)、第n-1项F(n-1)写成一个1*2的矩阵[Fn  ​​Fn-1] 并考虑怎样由前面的[Fn-1  ​​Fn-2]推过来。可以先把[Fn  ​​Fn-1]写成[1*Fn-1+1*Fn-2  ​​1*Fn-1+0*Fn-2]的形式,试推导一个矩阵base,使

[Fn-1  ​​Fn-2]*base=[Fn  ​​Fn-1]=[Fn-1+Fn-2  ​​Fn-1],因为Fn-1和Fn-2都在结果矩阵的第一列以系数为1的形式出现,结果矩阵是一个1*2的矩阵,所以base为一个2*2的矩阵,且第一列为1,1;

Fn-1和Fn-2在结果矩阵的第二列以系数为1、0的形式出现,所以结果矩阵第二列为1,0。即base= ,[Fn-1  ​​Fn-2]*=[Fn  ​​Fn-1]。

同理可以推出[Fn-2  ​​Fn-3]**=[Fn  ​​Fn-1]…………[F2 F1]*^(n-2)=[Fn Fn-1]。

此时本题的核心便是计算出base=的n-2次方就行了,可以用矩阵快速幂做(换汤不换药)

代码如下:

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const long long mod=;
struct matrix{ //用结构体构建矩阵类型
long long a[][];
}ans,a;
int init() //初始化矩阵。ans存放题解中提到的1*2的矩阵,这里为了统一用同一种矩
//阵乘法的处理,又发现若矩阵的一行(或一列)全为0,则乘法的结果矩阵
//的对应行(或列)也全为0,不影响结果,便用0把ans扩充成2*2的矩阵了 。
{
ans.a[][]=ans.a[][]=;
a.a[][]=a.a[][]=a.a[][]=;
}
matrix operator *(matrix a,matrix b)//矩阵乘法实现(运算符重载)
{
matrix c;
for(int i=;i<=;i++)
for(int j=;j<=;j++) c.a[i][j]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<=;k++)
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
return c;
}
int main()
{
long long n;
cin>>n;
if(n<=)
{
cout<<;
return ;
}
long long b=n-;
init();
while(b) //万年不变的快速幂
{
if(b&) ans=ans*a;
a=a*a;
b>>=;
}
cout<<ans.a[][];
return ;
}

P1962 斐波那契数列-题解(矩阵乘法扩展)的更多相关文章

  1. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  2. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  3. P1962 斐波那契数列 【矩阵快速幂】

    一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...

  4. 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导

    来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...

  5. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  6. 洛谷P1962 斐波那契数列 (矩阵快速幂)

    学了矩阵,练一下手... 1 #include<bits/stdc++.h> 2 typedef long long ll; 3 const ll mod=1e9+7; 4 using n ...

  7. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  8. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  9. HDU 4549 M斐波那契数列(矩阵快速幂)

    题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...

随机推荐

  1. ajax验证用户名是否存在

    jsp页面 <head> <script type="text/javascript" src="js/register.js">< ...

  2. 【CSS学习】--- float浮动属性

    一.前言 浮动元素以脱离标准流的方式来实现元素的向左或向右浮动,并且浮动元素还是在原来的行上进行浮动的.float浮动属性的四个参数:left:元素向左浮动:right:元素向右浮动:none:默认值 ...

  3. 小tips:JS的Truthy和Falsy(真值与假值)

    前言 Truthy 不等于 ture,他是指是在Boolean上下文中转换后的值为真的值.我的理解是,在javascript中所有表达式为true的值.同理Falsy指的是在javascript中所有 ...

  4. 图像的膨胀与腐蚀——OpenCV与C++的具体实现

    目录 1. 膨胀与腐蚀的原理 2. 膨胀的具体实现 1) OpenCV实现 2) C/C++实现 3) 验证与结果 3. 腐蚀的具体实现 1. 膨胀与腐蚀的原理 膨胀与腐蚀是数学形态学在图像处理中最基 ...

  5. 基于Html5 Plus + Vue + Mui 移动App 开发(二)

    基于Html5 Plus + Vue + Mui 移动App 开发(二) 界面效果: 本页面采用Html5 Plus + Vue + Mui 开发移动界面,本页面实现: 1.下拉刷新.上拉获取更多功能 ...

  6. Android 沉浸式状态栏完美解决方案

    现在搜索Android 沉浸式状态栏,真的是一堆一堆,写的特别多,但是真正用的舒服的真没有,在这里自己整理一下开发记录 注意,在使用这个步骤过程之前,请把之前设置的代码注释一下 把布局带有androi ...

  7. C#中文件下载的几种方法演示源码

    内容过程,把内容过程比较重要的内容做个珍藏,如下的内容是关于C#中文件下载的几种方法演示的内容,应该是对各朋友有较大好处. using System;using System.Data;using S ...

  8. java8及8之前日期相关类

    java 8日期相关类 Instant:精确到纳秒的时间戳 Duration:处理有关基于时间的时间量 LocalDate:只包含日期,比如:2016-10-20 LocalTime:只包含时间,比如 ...

  9. vue 导出xlsx表功能

    详细步骤: 1.需要安装三个依赖: npm install -S file-saver xlsx npm install -D script-loader 两个命令行包含三个依赖. 2.项目中src下 ...

  10. ASP.NET Zero--WEB.HOST应用程序

    WEB.HOST应用程序 AspNet Zero解决方案包含一个额外的项目Web.Host,它将所有应用程序功能公开为API.因此,您可以从任何设备使用API​​.实际上,Web.Mvc项目也是这样做 ...