题意

题目链接

Sol

自己yy着写了一下Boruvka算法。

算法思想很简单,就是每次贪心的用两个联通块之间最小的边去合并。

复杂度\(O(n \log n)\),然鹅没有Kruskal跑的快,但是好像在一类生成树问题上很有用

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define fi first
#define se second
#define pb push_back
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int MAXN = 5001;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
namespace DSU {
int fa[MAXN], siz[MAXN];
void init(int N) {
for(int i = 1; i <= N; i++) fa[i] = i, siz[i] = 1;
}
int find(int x) {
return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
void unionn(int x, int y) {
int fx = find(x), fy = find(y);
if(siz[fx] > siz[fy]) swap(fx, fy);
fa[fx] = fy; siz[fy] += siz[fx];
}
};
using namespace DSU;
vector<Pair> v[MAXN];
int link[MAXN], val[MAXN];
void Boruvka() {
init(N); int ans = 0;
bool flag;
do {
flag = 0;
memset(link, -1, sizeof(link));
memset(val, 0x3f, sizeof(val));
for(int x = 1; x <= N; x++) {
int fx = find(x);
for(auto &tmp : v[x]) {
int to = tmp.fi, w = tmp.se, fy = find(to);
if(fx == fy || (w > val[fx])) continue;
link[fx] = fy; val[fx] = w;
}
}
for(int x = 1; x <= N; x++) {
int fx = find(x);
if((~link[fx]) && find(fx) != find(link[fx]))
unionn(fx, link[fx]), ans += val[fx], flag = 1;
}
}while(flag);
int f1 = find(1);
for(int i = 2; i <= N; i++) if(find(i) != f1) return (void) puts("orz");
cout << ans;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(), w = read();
v[x].push_back({y, w});
v[y].push_back({x, w});
}
Boruvka();
}

洛谷P3366 【模板】最小生成树(Boruvka算法)的更多相关文章

  1. [洛谷P3366] [模板] 最小生成树

    存个模板,顺便复习一下kruskal和prim. 题目传送门 kruskal 稀疏图上表现更优. 设点数为n,边数为m. 复杂度:O(mlogm). 先对所有边按照边权排序,初始化并查集的信息. 然后 ...

  2. 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题

    链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...

  3. 最小生成树 & 洛谷P3366【模板】最小生成树 & 洛谷P2820 局域网

    嗯... 理解生成树的概念: 在一幅图中将所有n个点连接起来的n-1条边所形成的树. 最小生成树: 边权之和最小的生成树. 最小瓶颈生成树: 对于带权图,最大权值最小的生成树. 如何操作? 1.Pri ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  6. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  7. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  8. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  9. 洛谷P1119-灾后重建-floyd算法

    洛谷P1119-灾后重建 题目描述 给出\(B\)地区的村庄数NN,村庄编号从\(0\)到\(N-1\),和所有\(M\)条公路的长度,公路是双向的. 给出第\(i\)个村庄重建完成的时间\(t_i\ ...

随机推荐

  1. asp.net core系列 55 IS4使用Identity密码保护API

    一.概述 OAuth 2.0资源(web api)所有者密码授权,允许客户端(Client项目)向令牌服务(IdentityServer项目)发送用户名和密码,并获取代表该用户的访问令牌.在官方文档中 ...

  2. mysql实现主从备份

    mysql 主从备份的原理: 主服务器在做数据库操作的时候将所有的操作通过日志记录在binlog里面,有专门的文件存放.如localhost-bin.000003,这种,从服务器 和主服务配置好关系后 ...

  3. 带你由浅入深探索webpack4(一)

    相信你或多或少也听说过webpack.gulp等这些前端构建工具.近年来webpack越来越火,可以说成为了前端开发者必备的工具.如果你有接触过vue或者react项目,我想你应该对它有所了解. 这几 ...

  4. Docker最全教程之Go实战,墙裂推荐(十八)

    前言 与其他语言相比,Go非常值得推荐和学习,真香!为什么?主要是可以直接编译成机器代码(性能优越,体积非常小,可达10来M,见实践教程图片)而且设计良好,上手门槛低.本篇主要侧重于讲解了Go语言的优 ...

  5. C#语言介绍

    C#(读作“See Sharp”)是一种简单易用的新式编程语言,不仅面向对象,还类型安全. C# 源于 C 语言系列,C.C++.Java 和 JavaScript 程序员很快就可以上手使用. C# ...

  6. JSON Web Token入门教程

    目录 一.跨域认证的问题 二.JWT的原理 三.JWT的数据结构 3.1Header 3.2Payload 3.3 Signature 3.4 Base64URL 四.JWT的使用方式 五.JWT的几 ...

  7. jqGrid 常用 总结 -2

    这次的总结是针对于一次bug,先说下我们遇到的问题,就是后台人员告诉我们添加数据到100条数据的时候,101条就看不到,当时我觉得就是没有分页的原因,所以我就以为在jqgrid中设置一个loadonc ...

  8. Odoo:全球第一免费开源ERP权威性能测试报告完整版(绝对珍藏)

    Odoo平台简介 Odoo(以前叫OpenERP)是世界排名第一的开源ERP系统,最早由比利时一家公司开发,经过十几年发展,目前全世界Odoo的使用者超过2百万人,Odoo被翻译成几十种语言,Odoo ...

  9. cmd提取时间格式(小时)问题以及Windows系统语言判断

    你在这里看到了我的现在的时间是01:15,没错正在做个开发,本来好好的,结果一运行,直接报错: 这里就是时间中的获取小时出了问题,之前23点那会已经调试通过了,过那时是没有问题的,那么这时发生了什么? ...

  10. SQL基础语法

    数据库: 结构化查询语言(Structured Query Language)简称SQL: 数据库管理系统(Database Management System)简称DBMS: 数据库管理员(Data ...