格子刷油漆【动态规划问题】—NYOJ 980
个人博客页:https://www.scriptboy.cn/198.html
出处:蓝桥杯
题目描述:
X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如下图所示),现需要把这些格子刷上保护漆。
你可以从任意一个格子刷起,刷完一格,可以移动到和它相邻的格子(对角相邻也算数),但不能移动到较远的格子(因为油漆未干不能踩!)
比如:a d b c e f 就是合格的刷漆顺序。
c e f d a b 是另一种合适的方案。
当已知 N 时,求总的方案数。当N较大时,结果会迅速增大,请把结果对 1000000007 (十亿零七) 取模。
输入:
输入数据为一个正整数(不大于1000)
输出:
输出数据为一个正整数。
样例输入:
|
|
2
3
22
|
样例输出:
|
|
24
96
359635897
|
思路:
固定起点,由于如果起点在中间(第2~N-1列)可以分为左右两边来讨论,这时起点都是角格子。假如
a[i]表示2*i的格子从左上角开始刷刷完所有格子的方案数(其中i表示列数,1<=i<=N),有三种刷法刷完所有格子:
- 先向下刷(即先刷左下角),向下刷完之后有两种方法跳到下一列,刷完剩下的
i-1列需要2*a[i-1];- 向下一列刷,最后刷左下角,可以看出不能同列刷,只能一直向右刷,且在没有到最后一列之前是不能返回,所以刷完所有格子有2^i个方案;(此种情况比较特殊,后面需要还要用到,所以单独用
b[i]存储下来)- 向下一列刷,有两种方案到下一列,然后返回左下角,再刷下一列未刷格子之后,然后有两种方案再到下一列,可见有四种方案到下下列,所以刷完所有格子有
4*a[i-2]个方案;总之,就是左下角格子什么时候刷,造成了不同的情况。如果是起点不在角格子上,不难看出,可以将左右两侧分割成
2*i和2*(N-i)的矩形,需要其中一个矩形使用第2种刷法刷才能回到另一个矩形中。参考:https://blog.csdn.net/roosevelty/article/details/50706322
AC代码:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#include <bits/stdc++.h>
#define mod 1000000007
using namespace std;
long long a[1005], b[1005], sum;
int main()
{
int N;
while(cin >> N)
{
sum = 0;
b[1] = 1;
for(int i = 2; i <= N; i++)
{
b[i] = b[i-1] * 2 % mod;
}
a[1] = 1;
a[2] = 6;
for(int i = 3; i <= N; i++)
{
a[i] = b[i] + a[i-2]*4 + a[i-1]*2;
a[i] %= mod;
}
sum += 4*a[N]; // 四个角的情况
// 中间为起点的情况
for(int i = 2; i < N; i++)
{
sum += (2*b[i]*2*a[N-i]+2*a[i-1]*2*b[N-i+1])%mod;
}
if(N == 1) sum = 2;
cout << sum %mod << endl;
}
return 0;
}
|
格子刷油漆【动态规划问题】—NYOJ 980的更多相关文章
- NYOJ 980 格子刷油漆 动态规划
这道题目状态转移方程比较复杂,刚开始以为没这么多情况,看了好多大牛的博客再加上与同学讨论才看懂,写下心得. 因为起点不固定,所以我们一个一个来考虑,先从角上考虑,设三个数组来表示分别为D,A,Sum, ...
- 算法笔记_185:历届试题 格子刷油漆(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如下图所示),现需要把这些格子刷上保护漆. 你可以从任意一个格子刷起,刷完一格,可 ...
- 格子刷油漆(dp)-----------蓝桥备战系列
标题:格子刷油漆 X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如图1所示),现需要把这些格子刷上保护漆. 你可以从任意一个格子刷起,刷完一格,可以移动到和它相邻的格子(对角相邻也算数),但 ...
- Java实现蓝桥杯历届试题格子刷油漆
问题描述 X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如下图所示),现需要把这些格子刷上保护漆. 你可以从任意一个格子刷起,刷完一格,可以移动到和它相邻的格子(对角相邻也算数),但不能移动 ...
- [蓝桥杯]PREV-15.历届试题_格子刷油漆
题目描述: 代码如下: #include <stdio.h> #include <stdlib.h> #include <string.h> #define MOD ...
- hihoCoder #1055 : 刷油漆 [ 树形dp ]
传送门 结果:Accepted 提交时间:2015-05-11 10:36:08 #1055 : 刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到 ...
- HihoCoder第十二周:刷油漆
#1055 : 刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球 ...
- hiho_1055_刷油漆
题目大意 一棵树,每个节点都有相应的value值.从根开始选择M个节点相互连通,使得这些节点的value值之和最大. 题目链接:[刷油漆][1] 题目分析 典型的树形dp,dp[i][j] 表示以节点 ...
- HihoCoder 1055 : 刷油漆 树形DP第一题(对象 点)
刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了 ...
随机推荐
- 【一天一道LeetCode】#51. N-Queens
一天一道LeetCode系列 (一)题目 The n-queens puzzle is the problem of placing n queens on an n×n chessboard suc ...
- 使用Visual Studio创建图片精灵(Image Sprite)——Web Essential
原文:Creating Image Sprite in Visual Studio - Web Essential 译者注:有关图片精灵的信息请参阅http://baike.baidu.com/vie ...
- CSS3 Media Queries 简介
原文链接:Introduction to CSS3 Media Queries 原文日期: 2014年2月21日 翻译日期: 2014年2月26日 翻译人员: 铁锚 简介 随着移动设备的日益普及,we ...
- SQLServer 基础
1当设计表时,对表进行结构性的修改(如将原来可以null的改为不可null),直接改则不允许保存修改,需要选择 工具----选项----designers—表设计器和数据库设计器---阻止保持要求重新 ...
- OpenCV 金字塔图像缩放
// image_pyramid.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <string> #incl ...
- 增量会话对象——DeltaSession
在集群环境中为了使集群中各个节点的会话状态都同步,同步操作是集群重点解决的问题,一般来说有两种同步策略,其一是每次同步都把整个会话对象传给集群中其他节点,其他节点更新整个会话对象:其二是对会话中增量修 ...
- NOSQL schema创建原则
(1)数据规模 Bigtable类数据库系统(HBase,Cassandra等)是为了解决海量数据规模的存储需要设计的.这里说的海量数据规模指的是单个表存储的数据量是在TB或者PB规模,单个表是由千亿 ...
- 初探linux子系统集之写在前言
毕业两周年,进入嵌入式linux这个行业也已两个年头有余,从开始的linux驱动,android的framework,到现在的linux应用,android的app以及产品的零零总总,其实很想把这些都 ...
- pop弹簧动画实现
POP是一个在iOS与OS X上通用的极具扩展性的动画引擎.它在基本的静态动画的基础上增加的弹簧动画与衰减动画,使之能创造出更真实更具物理性的交互动画.POP的API可以快速的与现有的ObjC代码集成 ...
- 《深入理解java虚拟机》读书笔记1--java内存区域
Java内存管理 本文主要介绍Java虚拟机运行时的内存区域是如何划分的.Java对象的创建过程.Java对象的内存布局.Java对象的访问定位 一:运行时区域划分 主要可以分为以下 几个: 程序计数 ...