POJ 2411 压缩状态DP
这个题目非常赞! 给定一个矩形,要求用1*2 的格子进行覆盖,有多少种覆盖方法呢?
dp[i][j] 当状态为j,且第i行已经完全铺满的情况下的种类数有多少种?j中1表示占了,0表示没有被占。
很显然,当每行被放了之后,有一些状态是不可能的,我们这里用1 表示竖着放,0表示横着放。 所以两个0 要相邻,这是程序中的s。
我们每一状态转移,枚举每一个可能的状态,我们希望dp[i][j] 中的j呈现出s[k] 的状态,依次来进行状态转移。
#include <iostream>
#include <vector>
#include <cstring>
using namespace std; vector<int> s; // possible state
long long dp[13][1<<12]; // dp[i][j] the number of (row i state j) int main()
{
//freopen("1.txt","r",stdin);
int M,N;
while(cin>>M>>N && M!=0 && N!=0)
{
s.clear();
if(M*N%2) {cout<<0<<endl; continue;}
memset(dp,0,sizeof(dp));
// 0-0 pair
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<N; )
{
if(tag & (1<<i)) i++;
else
{
if( i+1< N && !(tag&(1<<(i+1)))) i+=2;
else break;
}
if(i== N) s.push_back(tag);
}
}
for(int i=0; i<s.size(); i++) dp[0][s[i]] = 1;
for(int step = 1; step< M; step++)
{
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<s.size(); i++)
{
if((tag & s[i]) != tag) continue;
dp[step][tag^ s[i]] += dp[step-1][tag];
}
}
}
cout<<dp[M-1][0]<<endl;
}
return 0;
}
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
POJ 2411 压缩状态DP的更多相关文章
- POJ 3254 压缩状态DP
题意:一个矩形网格,可以填0或1, 但有些位置什么数都不能填,要求相邻两个不同时为1,有多少种填法.矩形大小最大 12*12. 压缩状态DP大多有一个可行的state的范围,先求出这个state范围, ...
- ZOJ 3471 压缩状态DP
这个问题要看状态怎么想,第一种直接的想法是1代表未合并,状态就从1111111 转移到 带有1个0,然后带有两个0, 但是这样子编程非常不直观.换一种思路,0代表未合并,但是我可以先合并前几个,就是说 ...
- Mondriaan's Dream - POJ 2411(状态压缩)
题目大意:有一些1*2的矩形,现在用这些小矩形覆盖M*N的大矩形,不能重复覆盖,并且要覆盖完全,求有多少种覆盖方式. 分析:可以使用1和0两种状态来表示这个位置有没有放置,1表示放置,0表示没有放置, ...
- POJ 2411 状压DP经典
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 16771 Accepted: 968 ...
- POJ 2411 状压dp
F - Mondriaan's Dream Time Limit:3000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I6 ...
- poj 2411 Mondriaan's Dream(状态压缩dP)
题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...
- Poj 2411 Mondriaan's Dream(压缩矩阵DP)
一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...
- poj 3311(状态压缩DP)
poj 3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...
- poj 1185(状态压缩DP)
poj 1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...
随机推荐
- nodejs自己在项目中使用的一个工具库utils.js文件
文件内容如下: /** * utils.js */ var crypto = require('crypto'); var url = require('url'); var querystring ...
- Next Power of 2
Next Power of 2 Write a function that, for a given no n, finds a number p which is greater than or e ...
- Sublime Text—设置浏览器快捷键
在不同浏览器查看代码效果可谓是家常便饭,所以用不同快捷键打开相应浏览器可以大大提高工作效率. 介绍个简单的方法只需二步: 一.安装插件SideBarEnhancements 打开Package Con ...
- InternetOpen怎么使用代理
如果你用IE的默认代理设置:hinternet=InternetOpen(AfxGetAppName(),INTERNET_OPEN_TYPE_PROXY,NULL,NULL,0); 把INTERNE ...
- JAVA-位运算符
请解释&和&&.|和||的区别? 在逻辑运算中: · 与操作:与操作分为两种,一种是普通与,另外一种是短路与: |- 普通与(&):表示所有的判断条件都要执行,不管前面 ...
- SignalR 2.0入门
下载已完成的项目 本教程展示如何使用那么 SignalR 创建一个实时聊天应用程序.你会那么 SignalR 添加一个空的 ASP.NET web 应用程序,创建一个 HTML 页面发送并显示消息. ...
- (转)软件版本中的Alpha,Beta,RC,Trial是什么意思?
版本号:V(Version):即版本,通常用数字表示版本号.(如:EVEREST Ultimate v4.20.1188 Beta )Build:用数字或日期标示版本号的一种方式.(如:VeryCD ...
- 客户端javascript笔记
html 中的 onclick访问的是全局作用域
- 使用WebJar管理css、JavaScript文件
Web前端使用了越来越多的JS或CSS,如jQuery, Backbone.js 和Bootstrap.一般情况下,我们是将这些Web资源拷贝到Java的目录下,通过手工进行管理,这种通方式容易导致文 ...
- input内容改变触发事件,兼容IE
<html> <head> <script type="text/javascript"> window.onload = function() ...