POJ 2411 压缩状态DP
这个题目非常赞! 给定一个矩形,要求用1*2 的格子进行覆盖,有多少种覆盖方法呢?
dp[i][j] 当状态为j,且第i行已经完全铺满的情况下的种类数有多少种?j中1表示占了,0表示没有被占。
很显然,当每行被放了之后,有一些状态是不可能的,我们这里用1 表示竖着放,0表示横着放。 所以两个0 要相邻,这是程序中的s。
我们每一状态转移,枚举每一个可能的状态,我们希望dp[i][j] 中的j呈现出s[k] 的状态,依次来进行状态转移。
#include <iostream>
#include <vector>
#include <cstring>
using namespace std; vector<int> s; // possible state
long long dp[13][1<<12]; // dp[i][j] the number of (row i state j) int main()
{
//freopen("1.txt","r",stdin);
int M,N;
while(cin>>M>>N && M!=0 && N!=0)
{
s.clear();
if(M*N%2) {cout<<0<<endl; continue;}
memset(dp,0,sizeof(dp));
// 0-0 pair
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<N; )
{
if(tag & (1<<i)) i++;
else
{
if( i+1< N && !(tag&(1<<(i+1)))) i+=2;
else break;
}
if(i== N) s.push_back(tag);
}
}
for(int i=0; i<s.size(); i++) dp[0][s[i]] = 1;
for(int step = 1; step< M; step++)
{
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<s.size(); i++)
{
if((tag & s[i]) != tag) continue;
dp[step][tag^ s[i]] += dp[step-1][tag];
}
}
}
cout<<dp[M-1][0]<<endl;
}
return 0;
}
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
POJ 2411 压缩状态DP的更多相关文章
- POJ 3254 压缩状态DP
题意:一个矩形网格,可以填0或1, 但有些位置什么数都不能填,要求相邻两个不同时为1,有多少种填法.矩形大小最大 12*12. 压缩状态DP大多有一个可行的state的范围,先求出这个state范围, ...
- ZOJ 3471 压缩状态DP
这个问题要看状态怎么想,第一种直接的想法是1代表未合并,状态就从1111111 转移到 带有1个0,然后带有两个0, 但是这样子编程非常不直观.换一种思路,0代表未合并,但是我可以先合并前几个,就是说 ...
- Mondriaan's Dream - POJ 2411(状态压缩)
题目大意:有一些1*2的矩形,现在用这些小矩形覆盖M*N的大矩形,不能重复覆盖,并且要覆盖完全,求有多少种覆盖方式. 分析:可以使用1和0两种状态来表示这个位置有没有放置,1表示放置,0表示没有放置, ...
- POJ 2411 状压DP经典
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 16771 Accepted: 968 ...
- POJ 2411 状压dp
F - Mondriaan's Dream Time Limit:3000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I6 ...
- poj 2411 Mondriaan's Dream(状态压缩dP)
题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...
- Poj 2411 Mondriaan's Dream(压缩矩阵DP)
一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...
- poj 3311(状态压缩DP)
poj 3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...
- poj 1185(状态压缩DP)
poj 1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...
随机推荐
- CSS理解之padding--非原创
因为在慕课网观看了张大神的视频,学习到了一点东西,向和大家分享.视频地址 代码如下: <!DOCTYPE html> <html lang="zh-CN"> ...
- 我的jquery之路
不知不觉jquery已经看完了. 以前不知道jquery是什么,现在依然不是很清晰.或许学习的结果就是这样吧,忘记你所学的.
- ActiveMQ(5.10.0) - Message Redelivery and DLQ Handling
When messages expire on the ActiveMQ broker (they exceed their time-to-live, if set) or can’t be red ...
- Slickflow.NET 开源工作流引擎基础介绍(五) -- 会签加签高级特性介绍
前言:会签和加签是常见审批流程模式,在引擎中,对这两种流程模式做了分别定义和实现,其中也用到了Workflow Pattern的Multiple Instance(多实例) . 1. 会签和加签的定义 ...
- ASP.NET网站前端页面的复制
网络普及的时代,遇到问题的首要解决方案并不是问人,而是找度娘.当我们找一些技术性的问题时,会发现很多解决方案在博客里,看看博主发表的博客总是惊叹不已,想要自己也有这么一个好习惯,把学到的东西以自己的方 ...
- Centos6.5 64linux系统基础优化(一)
1 SecureCRT配色方案 http://blog.csdn.net/zklth/article/details/8937905 2 32位和64位Centos linux系统的区别及实际查看 ...
- Web前端开发:SQL Jsp小项目(一)
Jsp的学习算是告一段落,针对这段时间的学习,写了一个Jsp小项目来巩固学到的知识. 框架示意图 User list process UserAdd process 需要的界面效果: 需要工具:Ecl ...
- 本地安装discuz
出处:http://jingyan.baidu.com/article/b87fe19eb57ff252183568d9.html 网站建目前都很简单,建站容易,管理难,网站做大优化更难.本人有建站经 ...
- CSS的兼容性解决方案
什么是兼容性? 同一个网页,在不同浏览器下(IE6.IE7.IE8)下的显示效果不一致,这就是说"CSS不兼容". IETESTer可以同时测试IE5.5.IE6.IE7.IE8这 ...
- XML解析——Java中XML的四种解析方式
XML是一种通用的数据交换格式,它的平台无关性.语言无关性.系统无关性.给数据集成与交互带来了极大的方便.XML在不同的语言环境中解析方式都是一样的,只不过实现的语法不同而已. XML的解析方式分为四 ...