这个题目非常赞! 给定一个矩形,要求用1*2 的格子进行覆盖,有多少种覆盖方法呢?

dp[i][j] 当状态为j,且第i行已经完全铺满的情况下的种类数有多少种?j中1表示占了,0表示没有被占。

很显然,当每行被放了之后,有一些状态是不可能的,我们这里用1 表示竖着放,0表示横着放。 所以两个0 要相邻,这是程序中的s。

我们每一状态转移,枚举每一个可能的状态,我们希望dp[i][j] 中的j呈现出s[k] 的状态,依次来进行状态转移。

#include <iostream>
#include <vector>
#include <cstring>
using namespace std; vector<int> s; // possible state
long long dp[13][1<<12]; // dp[i][j] the number of (row i state j) int main()
{
//freopen("1.txt","r",stdin);
int M,N;
while(cin>>M>>N && M!=0 && N!=0)
{
s.clear();
if(M*N%2) {cout<<0<<endl; continue;}
memset(dp,0,sizeof(dp));
// 0-0 pair
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<N; )
{
if(tag & (1<<i)) i++;
else
{
if( i+1< N && !(tag&(1<<(i+1)))) i+=2;
else break;
}
if(i== N) s.push_back(tag);
}
}
for(int i=0; i<s.size(); i++) dp[0][s[i]] = 1;
for(int step = 1; step< M; step++)
{
for(int tag = 0; tag < (1<<N); tag++)
{
for(int i=0; i<s.size(); i++)
{
if((tag & s[i]) != tag) continue;
dp[step][tag^ s[i]] += dp[step-1][tag];
}
}
}
cout<<dp[M-1][0]<<endl;
}
return 0;
}

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

POJ 2411 压缩状态DP的更多相关文章

  1. POJ 3254 压缩状态DP

    题意:一个矩形网格,可以填0或1, 但有些位置什么数都不能填,要求相邻两个不同时为1,有多少种填法.矩形大小最大 12*12. 压缩状态DP大多有一个可行的state的范围,先求出这个state范围, ...

  2. ZOJ 3471 压缩状态DP

    这个问题要看状态怎么想,第一种直接的想法是1代表未合并,状态就从1111111 转移到 带有1个0,然后带有两个0, 但是这样子编程非常不直观.换一种思路,0代表未合并,但是我可以先合并前几个,就是说 ...

  3. Mondriaan's Dream - POJ 2411(状态压缩)

    题目大意:有一些1*2的矩形,现在用这些小矩形覆盖M*N的大矩形,不能重复覆盖,并且要覆盖完全,求有多少种覆盖方式. 分析:可以使用1和0两种状态来表示这个位置有没有放置,1表示放置,0表示没有放置, ...

  4. POJ 2411 状压DP经典

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16771   Accepted: 968 ...

  5. POJ 2411 状压dp

    F - Mondriaan's Dream Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I6 ...

  6. poj 2411 Mondriaan's Dream(状态压缩dP)

    题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...

  7. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  8. poj 3311(状态压缩DP)

    poj  3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...

  9. poj 1185(状态压缩DP)

    poj  1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...

随机推荐

  1. CSS理解之padding--非原创

    因为在慕课网观看了张大神的视频,学习到了一点东西,向和大家分享.视频地址 代码如下: <!DOCTYPE html> <html lang="zh-CN"> ...

  2. 我的jquery之路

    不知不觉jquery已经看完了. 以前不知道jquery是什么,现在依然不是很清晰.或许学习的结果就是这样吧,忘记你所学的.

  3. ActiveMQ(5.10.0) - Message Redelivery and DLQ Handling

    When messages expire on the ActiveMQ broker (they exceed their time-to-live, if set) or can’t be red ...

  4. Slickflow.NET 开源工作流引擎基础介绍(五) -- 会签加签高级特性介绍

    前言:会签和加签是常见审批流程模式,在引擎中,对这两种流程模式做了分别定义和实现,其中也用到了Workflow Pattern的Multiple Instance(多实例) . 1. 会签和加签的定义 ...

  5. ASP.NET网站前端页面的复制

    网络普及的时代,遇到问题的首要解决方案并不是问人,而是找度娘.当我们找一些技术性的问题时,会发现很多解决方案在博客里,看看博主发表的博客总是惊叹不已,想要自己也有这么一个好习惯,把学到的东西以自己的方 ...

  6. Centos6.5 64linux系统基础优化(一)

    1  SecureCRT配色方案 http://blog.csdn.net/zklth/article/details/8937905 2  32位和64位Centos linux系统的区别及实际查看 ...

  7. Web前端开发:SQL Jsp小项目(一)

    Jsp的学习算是告一段落,针对这段时间的学习,写了一个Jsp小项目来巩固学到的知识. 框架示意图 User list process UserAdd process 需要的界面效果: 需要工具:Ecl ...

  8. 本地安装discuz

    出处:http://jingyan.baidu.com/article/b87fe19eb57ff252183568d9.html 网站建目前都很简单,建站容易,管理难,网站做大优化更难.本人有建站经 ...

  9. CSS的兼容性解决方案

    什么是兼容性? 同一个网页,在不同浏览器下(IE6.IE7.IE8)下的显示效果不一致,这就是说"CSS不兼容". IETESTer可以同时测试IE5.5.IE6.IE7.IE8这 ...

  10. XML解析——Java中XML的四种解析方式

    XML是一种通用的数据交换格式,它的平台无关性.语言无关性.系统无关性.给数据集成与交互带来了极大的方便.XML在不同的语言环境中解析方式都是一样的,只不过实现的语法不同而已. XML的解析方式分为四 ...