D. Beautiful Array

题意

给你一个长度为 \(n\) 的序列。你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) 。求操作后最大的最大子段和。

题解

考虑最大子段和的子段一共有三类点:1. 左边没有 \(\times x\) 的点 ; 2. 中间 \(\times x\) 的点; 3. 右边没有 \(\times x\) 的点。

考虑 dp 。设 \(f[i][1/2/3]\) 表示前 \(i\) 个数,第 \(i\) 个数作为第 1/2/3 类点的最大子段和。转移显然。

code

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=3e5+5;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
int a[N],n,x;
long long f[N][5],ans=0;
int main()
{
n=gi(),x=gi();
for(int i=1;i<=n;++i) a[i]=gi();
for(int i=1;i<=n;++i)
{
f[i][1]=max(0ll,f[i-1][1])+a[i];
f[i][2]=max(0ll,max(f[i-1][1],f[i-1][2]))+1ll*a[i]*x;
f[i][3]=max(f[i-1][2],f[i-1][3])+a[i];
ans=max(ans,max(f[i][1],max(f[i][2],f[i][3])));
}
printf("%I64d",ans);
}

E. Guess the Root

题意

交互题。有一个 \(k(k\le 10)\) 次多项式 \(f(x)\) ,你可以进行不超过 \(50\) 次询问,每次询问给出 \(x\) ,返回 \(f(x)\) 。求 \(x_0\) 使得 \(f(x_0) \equiv 0 \mod (10^6 + 3)\) 。

题解

以下设 \(m=10^6+3\) 。

插值傻逼题。询问 \(k+1\) 次,然后枚举零点插值判断即可。

直接插值是 \(O(m k^2 \log m)\) 的。众所周知,当 \(x\) 取 \(1\sim n\) 可以通过预处理阶乘使插值复杂度降到 \(O(n)\) 。

当然由于本题 \(k\le 10\),我们甚至可以直接暴力打表分母。复杂度 \(O(mk)\) 。

code

#include<cstdio>
const int N=25,Mod=1e6+3;
const int n=11;
int y[N],k,inv[Mod+2];
int fm[]={404910,950915,220896,410947,30845,962989,30845,410947,220896,950915,404910};
inline int po(int x, int y)
{
int r=1;
while(y)
{
if(y&1) r=1ll*r*x%Mod;
x=1ll*x*x%Mod, y>>=1;
}
return r;
}
int judge(int k)
{
int ans=0,base=1;
for(int i=1;i<=n;++i) if(k!=i) base=1ll*base*(k-i)%Mod;
if(1<=k&&k<=11) return (1ll*base*fm[k-1]%Mod*y[k]%Mod+Mod)%Mod;
base=(base+Mod)%Mod;
for(int i=1;i<=n;++i)
ans=(ans+1ll*base*inv[(k-i+Mod)%Mod]%Mod*fm[i-1]%Mod*y[i]%Mod)%Mod;
return ans;
}
int main()
{
for(int i=1;i<=n;++i)
{
printf("? %d\n",i);
fflush(stdout);
scanf("%d",&y[i]);
}
inv[0]=inv[1]=1;
for(int i=2;i<Mod;++i) inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
for(int k=0;k<Mod;++k)
if(!judge(k))
{
printf("! %d\n",k);
fflush(stdout);
return 0;
}
printf("! -1\n");
fflush(stdout);
}

Educational Codeforces Round 63 选做的更多相关文章

  1. Educational Codeforces Round 64 选做

    感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...

  2. Educational Codeforces Round 65 选做

    好久没更博客了,随便水一篇 E. Range Deleting 题意 给你一个长度为 \(n\) 的序列 \(a_1,a_2,\dots a_n\) ,定义 \(f(l,r)\) 为删除 \(l\le ...

  3. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  4. [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)

    Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...

  5. Educational Codeforces Round 63部分题解

    Educational Codeforces Round 63 A 题目大意就不写了. 挺简单的,若果字符本来就单调不降,那么就不需要修改 否则找到第一次下降的位置和前面的换就好了. #include ...

  6. Educational Codeforces Round 63 Div. 2

    A:找到两个相邻字符使后者小于前者即可. #include<bits/stdc++.h> using namespace std; #define ll long long #define ...

  7. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array 分类讨论连续递推dp

    题意:给出一个 数列 和一个x 可以对数列一个连续的部分 每个数乘以x  问该序列可以达到的最大连续序列和是多少 思路: 不是所有区间题目都是线段树!!!!!! 这题其实是一个很简单的dp 使用的是分 ...

  8. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array(动态规划.递推)

    传送门 题意: 给你一个包含 n 个元素的序列 a[]: 定义序列 a[] 的 beauty 为序列 a[] 的连续区间的加和最大值,如果全为负数,则 beauty = 0: 例如: a[] = {1 ...

  9. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array (简单DP)

    题目:https://codeforces.com/contest/1155/problem/D 题意:给你n,x,一个n个数的序列,你可以选择一段区间,区间的数都乘以x,然后求出最大字段和 思路: ...

随机推荐

  1. leetcode刷题-- 5. 动态规划

    动态规划思路 参考 状态转移方程: 明确「状态」-> 定义dp数组/函数的含义 -> 明确「选择」-> 明确 base case 试题 53最大子序和 题目描述 53 给定一个整数数 ...

  2. (任意进制转换)将 r 进制数转成 k 进制数

    我们知道任意进制转换为十进制,都是乘以基数的多少次方,然后相加: 十进制转换为任意进制,都是除以基数,然后倒着取余数: 所以这里是用十进制数中转,实现任意进制数的转换 #include<iost ...

  3. Educational Codeforces Round 73 (Rated for Div. 2)E(思维,博弈)

    //这道题博弈的核心就是不能让后手有一段只能放b而长度不够放a的段,并且先手要放最后一次#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h> ...

  4. Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)B(SET)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;int a[2007];set<int& ...

  5. 使用Vue.js 和Chart.js制作绚丽多彩的图表

    前言 深入学习 chart.js 的选项来制作漂亮的图表.交互式图表可以给你的数据可视化提供很酷的展示方式.但是大多数开箱即用的解决方案用默认的选项并不能做出很绚丽的图表. 这篇文章中,我会教你如何自 ...

  6. 《React后台管理系统实战 :一》:目录结构、引入antd、引入路由、写login页面、使用antd的form登录组件、form前台验证、高阶函数/组件

    实战 上接,笔记:https://blog.csdn.net/u010132177/article/details/104150177 https://gitee.com/pasaulis/react ...

  7. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:表示信息变化的操作

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  8. [Database] MAC MySQL中文乱码问题

    1 确保数据库编码设置, 可修改my.cnf mysql> show variables like '%character%'; +--------------------------+---- ...

  9. Java经典算法50道题

    [程序1]题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 月   数量  1    1  2   ...

  10. 【替代语法】PHP中冒号、endif、endwhile、endfor这些都是什么

    我们经常在wordpress一类博客程序的模板里面看到很多奇怪的PHP语法,比如: <?php if(empty($GET_['a'])): ?><font color=" ...