Educational Codeforces Round 63 选做
D. Beautiful Array
题意
给你一个长度为 \(n\) 的序列。你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) 。求操作后最大的最大子段和。
题解
考虑最大子段和的子段一共有三类点:1. 左边没有 \(\times x\) 的点 ; 2. 中间 \(\times x\) 的点; 3. 右边没有 \(\times x\) 的点。
考虑 dp 。设 \(f[i][1/2/3]\) 表示前 \(i\) 个数,第 \(i\) 个数作为第 1/2/3 类点的最大子段和。转移显然。
code
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=3e5+5;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
int a[N],n,x;
long long f[N][5],ans=0;
int main()
{
n=gi(),x=gi();
for(int i=1;i<=n;++i) a[i]=gi();
for(int i=1;i<=n;++i)
{
f[i][1]=max(0ll,f[i-1][1])+a[i];
f[i][2]=max(0ll,max(f[i-1][1],f[i-1][2]))+1ll*a[i]*x;
f[i][3]=max(f[i-1][2],f[i-1][3])+a[i];
ans=max(ans,max(f[i][1],max(f[i][2],f[i][3])));
}
printf("%I64d",ans);
}
E. Guess the Root
题意
交互题。有一个 \(k(k\le 10)\) 次多项式 \(f(x)\) ,你可以进行不超过 \(50\) 次询问,每次询问给出 \(x\) ,返回 \(f(x)\) 。求 \(x_0\) 使得 \(f(x_0) \equiv 0 \mod (10^6 + 3)\) 。
题解
以下设 \(m=10^6+3\) 。
插值傻逼题。询问 \(k+1\) 次,然后枚举零点插值判断即可。
直接插值是 \(O(m k^2 \log m)\) 的。众所周知,当 \(x\) 取 \(1\sim n\) 可以通过预处理阶乘使插值复杂度降到 \(O(n)\) 。
当然由于本题 \(k\le 10\),我们甚至可以直接暴力打表分母。复杂度 \(O(mk)\) 。
code
#include<cstdio>
const int N=25,Mod=1e6+3;
const int n=11;
int y[N],k,inv[Mod+2];
int fm[]={404910,950915,220896,410947,30845,962989,30845,410947,220896,950915,404910};
inline int po(int x, int y)
{
int r=1;
while(y)
{
if(y&1) r=1ll*r*x%Mod;
x=1ll*x*x%Mod, y>>=1;
}
return r;
}
int judge(int k)
{
int ans=0,base=1;
for(int i=1;i<=n;++i) if(k!=i) base=1ll*base*(k-i)%Mod;
if(1<=k&&k<=11) return (1ll*base*fm[k-1]%Mod*y[k]%Mod+Mod)%Mod;
base=(base+Mod)%Mod;
for(int i=1;i<=n;++i)
ans=(ans+1ll*base*inv[(k-i+Mod)%Mod]%Mod*fm[i-1]%Mod*y[i]%Mod)%Mod;
return ans;
}
int main()
{
for(int i=1;i<=n;++i)
{
printf("? %d\n",i);
fflush(stdout);
scanf("%d",&y[i]);
}
inv[0]=inv[1]=1;
for(int i=2;i<Mod;++i) inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
for(int k=0;k<Mod;++k)
if(!judge(k))
{
printf("! %d\n",k);
fflush(stdout);
return 0;
}
printf("! -1\n");
fflush(stdout);
}
Educational Codeforces Round 63 选做的更多相关文章
- Educational Codeforces Round 64 选做
感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...
- Educational Codeforces Round 65 选做
好久没更博客了,随便水一篇 E. Range Deleting 题意 给你一个长度为 \(n\) 的序列 \(a_1,a_2,\dots a_n\) ,定义 \(f(l,r)\) 为删除 \(l\le ...
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)
Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...
- Educational Codeforces Round 63部分题解
Educational Codeforces Round 63 A 题目大意就不写了. 挺简单的,若果字符本来就单调不降,那么就不需要修改 否则找到第一次下降的位置和前面的换就好了. #include ...
- Educational Codeforces Round 63 Div. 2
A:找到两个相邻字符使后者小于前者即可. #include<bits/stdc++.h> using namespace std; #define ll long long #define ...
- Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array 分类讨论连续递推dp
题意:给出一个 数列 和一个x 可以对数列一个连续的部分 每个数乘以x 问该序列可以达到的最大连续序列和是多少 思路: 不是所有区间题目都是线段树!!!!!! 这题其实是一个很简单的dp 使用的是分 ...
- Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array(动态规划.递推)
传送门 题意: 给你一个包含 n 个元素的序列 a[]: 定义序列 a[] 的 beauty 为序列 a[] 的连续区间的加和最大值,如果全为负数,则 beauty = 0: 例如: a[] = {1 ...
- Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array (简单DP)
题目:https://codeforces.com/contest/1155/problem/D 题意:给你n,x,一个n个数的序列,你可以选择一段区间,区间的数都乘以x,然后求出最大字段和 思路: ...
随机推荐
- svn 回退/更新/取消某个版本命令详解
1,取消文件: svn revert 文件名 2,取消目录 svn revert --depth=infinity 目录名 3,回退版本 方法1: 用svn merge 1) 先svn up,保证更新 ...
- 用Jackson进行Json序列化时的常用注解
Jackson时spring boot默认使用的json格式化的包,它的几个常用注解: @JsonIgnore 用在属性上面,在序列化和反序列化时都自动忽略掉该属性 @JsonProperty(&qu ...
- Spring boot 启动图片
生成工具:http://patorjk.com/software/taag/#p=testall&h=0&v=0&f=Graffiti&t=Type%20Somethi ...
- Java基础 -2.4
字符型char类型 在任何的编程语言之中,字符都可以与int进行互相转换,也就是这个字符中所描述的内容可以通过int获取其内容所在的系统编码 public class ddd { public sta ...
- Python环境搭建-2 编译器和解释器
编译器与解释器 编译器/解释器:高级语言与机器之间的翻译官 都是将代码翻译成机器可以执行的二进制机器码,只不过在运行原理和翻译过程有不同而已. 那么两者有什么区别呢? 编译器:先整体编译再执行 解释器 ...
- SpringMVC——SSM整合
1.环境要求: IDEA MySQL 5.1.19 Tomcat 9 Maven 3.6.1 2.数据库环境搭建 创建一个存放书籍的数据库表 CREATE DATABASE `ssmbuild`; U ...
- Unity表面着色器
表面着色器和之前无光照着色器不同,其中没有顶点着色器和片元着色器,而增加了光照函数: 接下写了一个求两个贴图的光照效果 两个贴图做插值运算: Shader "Custom/SurfaceSh ...
- CentOS 7 搭建Cobbler实现自动化安装系统
1.安装软件包 # yum -y install epel-release #安装EPEL源 # yum -y install cobbler dhcp pykickstart 2.启动cob ...
- 列表推导式、生成器表达式以及zip()max()max()/min()sum()sort()map()filter()的用法
列表推导式: 基本格式: variable = [out_exp_res for out_exp in input_list if out_exp == 2] #out_exp_res: 列表生成元素 ...
- 常见Http状态码大全详解
HTTP状态码的分类 HTTP状态码由三个十进制数字组成,第一个十进制数字定义了状态码的类型,后两个数字没有分类的作用.HTTP状态码共分为5种类型: 具体如下: 状态码 内容 详细内容 信息告知 - ...