D. Beautiful Array

题意

给你一个长度为 \(n\) 的序列。你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) 。求操作后最大的最大子段和。

题解

考虑最大子段和的子段一共有三类点:1. 左边没有 \(\times x\) 的点 ; 2. 中间 \(\times x\) 的点; 3. 右边没有 \(\times x\) 的点。

考虑 dp 。设 \(f[i][1/2/3]\) 表示前 \(i\) 个数,第 \(i\) 个数作为第 1/2/3 类点的最大子段和。转移显然。

code

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=3e5+5;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
int a[N],n,x;
long long f[N][5],ans=0;
int main()
{
n=gi(),x=gi();
for(int i=1;i<=n;++i) a[i]=gi();
for(int i=1;i<=n;++i)
{
f[i][1]=max(0ll,f[i-1][1])+a[i];
f[i][2]=max(0ll,max(f[i-1][1],f[i-1][2]))+1ll*a[i]*x;
f[i][3]=max(f[i-1][2],f[i-1][3])+a[i];
ans=max(ans,max(f[i][1],max(f[i][2],f[i][3])));
}
printf("%I64d",ans);
}

E. Guess the Root

题意

交互题。有一个 \(k(k\le 10)\) 次多项式 \(f(x)\) ,你可以进行不超过 \(50\) 次询问,每次询问给出 \(x\) ,返回 \(f(x)\) 。求 \(x_0\) 使得 \(f(x_0) \equiv 0 \mod (10^6 + 3)\) 。

题解

以下设 \(m=10^6+3\) 。

插值傻逼题。询问 \(k+1\) 次,然后枚举零点插值判断即可。

直接插值是 \(O(m k^2 \log m)\) 的。众所周知,当 \(x\) 取 \(1\sim n\) 可以通过预处理阶乘使插值复杂度降到 \(O(n)\) 。

当然由于本题 \(k\le 10\),我们甚至可以直接暴力打表分母。复杂度 \(O(mk)\) 。

code

#include<cstdio>
const int N=25,Mod=1e6+3;
const int n=11;
int y[N],k,inv[Mod+2];
int fm[]={404910,950915,220896,410947,30845,962989,30845,410947,220896,950915,404910};
inline int po(int x, int y)
{
int r=1;
while(y)
{
if(y&1) r=1ll*r*x%Mod;
x=1ll*x*x%Mod, y>>=1;
}
return r;
}
int judge(int k)
{
int ans=0,base=1;
for(int i=1;i<=n;++i) if(k!=i) base=1ll*base*(k-i)%Mod;
if(1<=k&&k<=11) return (1ll*base*fm[k-1]%Mod*y[k]%Mod+Mod)%Mod;
base=(base+Mod)%Mod;
for(int i=1;i<=n;++i)
ans=(ans+1ll*base*inv[(k-i+Mod)%Mod]%Mod*fm[i-1]%Mod*y[i]%Mod)%Mod;
return ans;
}
int main()
{
for(int i=1;i<=n;++i)
{
printf("? %d\n",i);
fflush(stdout);
scanf("%d",&y[i]);
}
inv[0]=inv[1]=1;
for(int i=2;i<Mod;++i) inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
for(int k=0;k<Mod;++k)
if(!judge(k))
{
printf("! %d\n",k);
fflush(stdout);
return 0;
}
printf("! -1\n");
fflush(stdout);
}

Educational Codeforces Round 63 选做的更多相关文章

  1. Educational Codeforces Round 64 选做

    感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...

  2. Educational Codeforces Round 65 选做

    好久没更博客了,随便水一篇 E. Range Deleting 题意 给你一个长度为 \(n\) 的序列 \(a_1,a_2,\dots a_n\) ,定义 \(f(l,r)\) 为删除 \(l\le ...

  3. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  4. [Educational Codeforces Round 63 ] D. Beautiful Array (思维+DP)

    Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array time limit per test 2 seconds ...

  5. Educational Codeforces Round 63部分题解

    Educational Codeforces Round 63 A 题目大意就不写了. 挺简单的,若果字符本来就单调不降,那么就不需要修改 否则找到第一次下降的位置和前面的换就好了. #include ...

  6. Educational Codeforces Round 63 Div. 2

    A:找到两个相邻字符使后者小于前者即可. #include<bits/stdc++.h> using namespace std; #define ll long long #define ...

  7. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array 分类讨论连续递推dp

    题意:给出一个 数列 和一个x 可以对数列一个连续的部分 每个数乘以x  问该序列可以达到的最大连续序列和是多少 思路: 不是所有区间题目都是线段树!!!!!! 这题其实是一个很简单的dp 使用的是分 ...

  8. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array(动态规划.递推)

    传送门 题意: 给你一个包含 n 个元素的序列 a[]: 定义序列 a[] 的 beauty 为序列 a[] 的连续区间的加和最大值,如果全为负数,则 beauty = 0: 例如: a[] = {1 ...

  9. Educational Codeforces Round 63 (Rated for Div. 2) D. Beautiful Array (简单DP)

    题目:https://codeforces.com/contest/1155/problem/D 题意:给你n,x,一个n个数的序列,你可以选择一段区间,区间的数都乘以x,然后求出最大字段和 思路: ...

随机推荐

  1. Java基础知识笔记第一章:入门

    java的地位: java具有面向对象,与平台无关,安全,稳定和多线程等优良特性,是目前软件设计中优秀的编程语言. java的特点: 1.简单 2.面向对象 3.平台无关 jre(java runti ...

  2. 10 JavaScript对象&类&for循环

    JavaScript对象 JavaScript中所有事物都是对象:字符串.数值.数组.函数.数学和正则表达式 JavaScript有些类型可以是字面量而非对象:如字符串.数值.布尔值 JavaScri ...

  3. 二十一 Struts的数据校验两种方式:手动编码和xml校验

    数据的校验: 一.前台校验:JS校验 JS的校验不是必须的,JS可以被绕行,可以提升用户体验 二.后台校验:编码校验 必须的校验 三.校验的方式: 手动编码(不建议使用) 配置文件(支持) 手动编码的 ...

  4. ANSYS-MFC生成APDL

    目录 1. 简介 2. APDL生成 3. 调用ANSYS批处理 1. 简介 对于ANSYS-MFC二次开发,两者之间的关系非常明确,从界面中读取参数并转换成APDL语言,然后调用批处理操作. 对于简 ...

  5. idea没有import project解决办法

    参考:https://blog.csdn.net/zengxiaosen/article/details/52807540

  6. 凭什么相信 5G 很安全?

    导读 电信行业及其专家指责科学家说,他们研究的5G无线技术所带来的手机辐射制造了恐慌.由于我们的许多研究工作都是由公共资助的,因此我们相信从道德的角度来看,我们有责任告知公众,经过同行评审的科学文献究 ...

  7. #P1099 树网的核 题解

    题目描述 pdf 题解 这一题,刚开始看题目感觉好像很难,题目又长……一看数据范围,呵呵. 已经给出来这是个DAG,所以不用担心连通性的问题.那么怎么做呢? 朴素的做法是把树的直径的两个端点都统计出来 ...

  8. CMake构建Qt5的VS2015项目 (Hello Qt5)

    Qt5的编译 Windows下载编译Qt5 Gui CMakeLists.txt 源码 cmake_minimum_required(VERSION 2.8.11) project(HelloQt5) ...

  9. java 调用阿里云短信接口,报InvalidTimeStamp.Expired : Specified time stamp or date value is expired.

    官网解释: 问题所在: 自己的电脑(或者服务器) 的时间与阿里云的服务器时间 相差15分钟了. 解决方法 : 把自己的电脑时间 (或者服务器)的时间 改成标准的北京时间就行了.

  10. uniGUI之MainModule(12)

    1]必须设置.  一个 user 一个, 在此放数据库控件是各 user 独立 2]常用属性: 应用 MainModule 正确的方法是将连接组件放置在 MainModule 上, 并将数据集放在窗体 ...