导入 matplotlib 模块:

import matplotlib

查看自己版本所支持的backends:

print(matplotlib.rcsetup.all_backends)

返回信息:

['GTK3Agg', 'GTK3Cairo', 'MacOSX', 'nbAgg', 'Qt4Agg', 'Qt4Cairo', 'Qt5Agg', 'Qt5Cairo', 'TkAgg', 'TkCairo', 'WebAgg', 'WX', 'WXAgg', 'WXCairo', 'agg', 'cairo', 'pdf', 'pgf', 'ps', 'svg', 'template']

查看当前工作的matplotlibrc文件是哪个:

print(matplotlib.matplotlib_fname())

返回信息:

D:\ProgramData\Anaconda2\lib\site-packages\matplotlib\mpl-data\matplotlibrc

打开 matplotlibrc 查看相应内容:

将 backend 修改为 TkAgg:

执行如下代码:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from keras.models import Model
from keras.layers import Dense, Activation, Input, Reshape
from keras.layers import Conv1D, Flatten, Dropout
from keras.optimizers import SGD, Adam

def sample_data(n_samples=10000, x_vals=np.arange(0, 5, .1), max_offset=100, mul_range=[1, 2]):
    vectors = []
    for i in range(n_samples):
        offset = np.random.random() * max_offset
        mul = mul_range[0] + np.random.random() * (mul_range[1] - mul_range[0])
        vectors.append(
            np.sin(offset + x_vals * mul) / 2 + .5
        )
    return np.array(vectors)

ax = pd.DataFrame(np.transpose(sample_data(5))).plot()
plt.show()

生成图像:

执行代码:

def get_generative(G_in, dense_dim=200, out_dim=50, lr=1e-3):
    x = Dense(dense_dim)(G_in)
    x = Activation('tanh')(x)
    G_out = Dense(out_dim, activation='tanh')(x)
    G = Model(G_in, G_out)
    opt = SGD(lr=lr)
    G.compile(loss='binary_crossentropy', optimizer=opt)
    return G, G_out

G_in = Input(shape=[10])
G, G_out = get_generative(G_in)
G.summary()

生成图像:

执行代码:

def get_discriminative(D_in, lr=1e-3, drate=.25, n_channels=50, conv_sz=5, leak=.2):
    x = Reshape((-1, 1))(D_in)
    x = Conv1D(n_channels, conv_sz, activation='relu')(x)
    x = Dropout(drate)(x)
    x = Flatten()(x)
    x = Dense(n_channels)(x)
    D_out = Dense(2, activation='sigmoid')(x)
    D = Model(D_in, D_out)
    dopt = Adam(lr=lr)
    D.compile(loss='binary_crossentropy', optimizer=dopt)
    return D, D_out

D_in = Input(shape=[50])
D, D_out = get_discriminative(D_in)
D.summary()

生成图像:

执行代码:

def set_trainability(model, trainable=False):
    model.trainable = trainable
    for layer in model.layers:
        layer.trainable = trainable

def make_gan(GAN_in, G, D):
    set_trainability(D, False)
    x = G(GAN_in)
    GAN_out = D(x)
    GAN = Model(GAN_in, GAN_out)
    GAN.compile(loss='binary_crossentropy', optimizer=G.optimizer)
    return GAN, GAN_out

GAN_in = Input([10])
GAN, GAN_out = make_gan(GAN_in, G, D)
GAN.summary()

生成图像:

执行代码:

def sample_data_and_gen(G, noise_dim=10, n_samples=10000):
    XT = sample_data(n_samples=n_samples)
    XN_noise = np.random.uniform(0, 1, size=[n_samples, noise_dim])
    XN = G.predict(XN_noise)
    X = np.concatenate((XT, XN))
    y = np.zeros((2*n_samples, 2))
    y[:n_samples, 1] = 1
    y[n_samples:, 0] = 1
    return X, y

def pretrain(G, D, noise_dim=10, n_samples=10000, batch_size=32):
    X, y = sample_data_and_gen(G, n_samples=n_samples, noise_dim=noise_dim)
    set_trainability(D, True)
    D.fit(X, y, epochs=1, batch_size=batch_size)

pretrain(G, D)

返回信息:

Epoch 1/1

   32/20000 [..............................] - ETA: 6:42 - loss: 0.7347
  288/20000 [..............................] - ETA: 47s - loss: 0.4808
  544/20000 [..............................] - ETA: 26s - loss: 0.3318
  800/20000 [>.............................] - ETA: 19s - loss: 0.2359
 1056/20000 [>.............................] - ETA: 15s - loss: 0.1805
 1312/20000 [>.............................] - ETA: 12s - loss: 0.1459
 1568/20000 [=>............................] - ETA: 11s - loss: 0.1223
 1824/20000 [=>............................] - ETA: 10s - loss: 0.1053
 2048/20000 [==>...........................] - ETA: 9s - loss: 0.0938
 2272/20000 [==>...........................] - ETA: 8s - loss: 0.0847
 2528/20000 [==>...........................] - ETA: 8s - loss: 0.0761
 2784/20000 [===>..........................] - ETA: 7s - loss: 0.0692
 3040/20000 [===>..........................] - ETA: 7s - loss: 0.0634
 3296/20000 [===>..........................] - ETA: 6s - loss: 0.0585
 3552/20000 [====>.........................] - ETA: 6s - loss: 0.0543
 3808/20000 [====>.........................] - ETA: 6s - loss: 0.0507
 4064/20000 [=====>........................] - ETA: 5s - loss: 0.0475
 4352/20000 [=====>........................] - ETA: 5s - loss: 0.0444
 4608/20000 [=====>........................] - ETA: 5s - loss: 0.0420
 4864/20000 [======>.......................] - ETA: 5s - loss: 0.0398
 5120/20000 [======>.......................] - ETA: 4s - loss: 0.0378
 5376/20000 [=======>......................] - ETA: 4s - loss: 0.0360
 5632/20000 [=======>......................] - ETA: 4s - loss: 0.0344
 5888/20000 [=======>......................] - ETA: 4s - loss: 0.0329
 6144/20000 [========>.....................] - ETA: 4s - loss: 0.0315
 6400/20000 [========>.....................] - ETA: 4s - loss: 0.0303
 6656/20000 [========>.....................] - ETA: 4s - loss: 0.0291
 6880/20000 [=========>....................] - ETA: 3s - loss: 0.0282
 7136/20000 [=========>....................] - ETA: 3s - loss: 0.0272
 7392/20000 [==========>...................] - ETA: 3s - loss: 0.0262
 7648/20000 [==========>...................] - ETA: 3s - loss: 0.0254
 7904/20000 [==========>...................] - ETA: 3s - loss: 0.0246
 8160/20000 [===========>..................] - ETA: 3s - loss: 0.0238
 8416/20000 [===========>..................] - ETA: 3s - loss: 0.0231
 8672/20000 [============>.................] - ETA: 3s - loss: 0.0224
 8928/20000 [============>.................] - ETA: 3s - loss: 0.0218
 9184/20000 [============>.................] - ETA: 2s - loss: 0.0212
 9440/20000 [=============>................] - ETA: 2s - loss: 0.0206
 9696/20000 [=============>................] - ETA: 2s - loss: 0.0200
 9952/20000 [=============>................] - ETA: 2s - loss: 0.0195
10208/20000 [==============>...............] - ETA: 2s - loss: 0.0190
10464/20000 [==============>...............] - ETA: 2s - loss: 0.0186
10720/20000 [===============>..............] - ETA: 2s - loss: 0.0181
10976/20000 [===============>..............] - ETA: 2s - loss: 0.0177
11232/20000 [===============>..............] - ETA: 2s - loss: 0.0173
11488/20000 [================>.............] - ETA: 2s - loss: 0.0169
11712/20000 [================>.............] - ETA: 2s - loss: 0.0166
11968/20000 [================>.............] - ETA: 2s - loss: 0.0163
12224/20000 [=================>............] - ETA: 2s - loss: 0.0159
12480/20000 [=================>............] - ETA: 1s - loss: 0.0156
12736/20000 [==================>...........] - ETA: 1s - loss: 0.0153
12992/20000 [==================>...........] - ETA: 1s - loss: 0.0150
13248/20000 [==================>...........] - ETA: 1s - loss: 0.0147
13504/20000 [===================>..........] - ETA: 1s - loss: 0.0144
13760/20000 [===================>..........] - ETA: 1s - loss: 0.0141
14016/20000 [====================>.........] - ETA: 1s - loss: 0.0139
14272/20000 [====================>.........] - ETA: 1s - loss: 0.0136
14528/20000 [====================>.........] - ETA: 1s - loss: 0.0134
14784/20000 [=====================>........] - ETA: 1s - loss: 0.0132
15040/20000 [=====================>........] - ETA: 1s - loss: 0.0129
15296/20000 [=====================>........] - ETA: 1s - loss: 0.0127
15552/20000 [======================>.......] - ETA: 1s - loss: 0.0125
15808/20000 [======================>.......] - ETA: 1s - loss: 0.0123
16064/20000 [=======================>......] - ETA: 0s - loss: 0.0121
16320/20000 [=======================>......] - ETA: 0s - loss: 0.0119
16576/20000 [=======================>......] - ETA: 0s - loss: 0.0118
16832/20000 [========================>.....] - ETA: 0s - loss: 0.0116
17088/20000 [========================>.....] - ETA: 0s - loss: 0.0114
17344/20000 [=========================>....] - ETA: 0s - loss: 0.0112
17600/20000 [=========================>....] - ETA: 0s - loss: 0.0111
17856/20000 [=========================>....] - ETA: 0s - loss: 0.0109
18144/20000 [==========================>...] - ETA: 0s - loss: 0.0107
18400/20000 [==========================>...] - ETA: 0s - loss: 0.0106
18656/20000 [==========================>...] - ETA: 0s - loss: 0.0104
18912/20000 [===========================>..] - ETA: 0s - loss: 0.0103
19168/20000 [===========================>..] - ETA: 0s - loss: 0.0102
19456/20000 [============================>.] - ETA: 0s - loss: 0.0100
19712/20000 [============================>.] - ETA: 0s - loss: 0.0099
19968/20000 [============================>.] - ETA: 0s - loss: 0.0098
20000/20000 [==============================] - 5s 236us/step - loss: 0.0097

引入模块:

from tqdm import tqdm_notebook as tqdm

执行代码:

def sample_noise(G, noise_dim=10, n_samples=10000):
    X = np.random.uniform(0, 1, size=[n_samples, noise_dim])
    y = np.zeros((n_samples, 2))
    y[:, 1] = 1
    return X, y

def train(GAN, G, D, epochs=200, n_samples=10000, noise_dim=10, batch_size=32, verbose=False, v_freq=50):
    d_loss = []
    g_loss = []
    e_range = range(epochs)
    if verbose:
        e_range = tqdm(e_range)
    for epoch in e_range:
        X, y = sample_data_and_gen(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, True)
        d_loss.append(D.train_on_batch(X, y))

        X, y = sample_noise(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, False)
        g_loss.append(GAN.train_on_batch(X, y))
        if verbose and (epoch + 1) % v_freq == 0:
            print("Epoch #{}: Generative Loss: {}, Discriminative Loss: {}".format(epoch + 1, g_loss[-1], d_loss[-1]))
    return d_loss, g_loss

d_loss, g_loss = train(GAN, G, D, verbose=True)

返回信息:

HBox(children=(IntProgress(value=0, max=200), HTML(value='')))
Epoch #50: Generative Loss: 5.842154026031494, Discriminative Loss: 0.4683375060558319
Epoch #100: Generative Loss: 3.4111320972442627, Discriminative Loss: 0.13123030960559845
Epoch #150: Generative Loss: 5.5205817222595215, Discriminative Loss: 0.03762095794081688
Epoch #200: Generative Loss: 4.994686603546143, Discriminative Loss: 0.045186348259449005

执行代码:

ax = pd.DataFrame(
    {
        'Generative Loss': g_loss,
        'Discriminative Loss': d_loss,
    }
).plot(title='Training loss', logy=True)
ax.set_xlabel("Epochs")
ax.set_ylabel("Loss")
plt.show()

生成图像:

执行代码:

N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).plot()
plt.show()

生成图像:

执行代码:

N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).rolling(5).mean()[5:].plot()
plt.show()

生成图像:

完整代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from keras.models import Model
from keras.layers import Dense, Activation, Input, Reshape
from keras.layers import Conv1D, Flatten, Dropout
from keras.optimizers import SGD, Adam

from tqdm import tqdm_notebook as tqdm

#sec
def sample_data(n_samples=10000, x_vals=np.arange(0, 5, .1), max_offset=100, mul_range=[1, 2]):
    vectors = []
    for i in range(n_samples):
        offset = np.random.random() * max_offset
        mul = mul_range[0] + np.random.random() * (mul_range[1] - mul_range[0])
        vectors.append(
            np.sin(offset + x_vals * mul) / 2 + .5
        )
    return np.array(vectors)

ax = pd.DataFrame(np.transpose(sample_data(5))).plot()
plt.show()

#sec
def get_generative(G_in, dense_dim=200, out_dim=50, lr=1e-3):
    x = Dense(dense_dim)(G_in)
    x = Activation('tanh')(x)
    G_out = Dense(out_dim, activation='tanh')(x)
    G = Model(G_in, G_out)
    opt = SGD(lr=lr)
    G.compile(loss='binary_crossentropy', optimizer=opt)
    return G, G_out

G_in = Input(shape=[10])
G, G_out = get_generative(G_in)
G.summary()

#sec
def get_discriminative(D_in, lr=1e-3, drate=.25, n_channels=50, conv_sz=5, leak=.2):
    x = Reshape((-1, 1))(D_in)
    x = Conv1D(n_channels, conv_sz, activation='relu')(x)
    x = Dropout(drate)(x)
    x = Flatten()(x)
    x = Dense(n_channels)(x)
    D_out = Dense(2, activation='sigmoid')(x)
    D = Model(D_in, D_out)
    dopt = Adam(lr=lr)
    D.compile(loss='binary_crossentropy', optimizer=dopt)
    return D, D_out

D_in = Input(shape=[50])
D, D_out = get_discriminative(D_in)
D.summary()

#sec
def set_trainability(model, trainable=False):
    model.trainable = trainable
    for layer in model.layers:
        layer.trainable = trainable

def make_gan(GAN_in, G, D):
    set_trainability(D, False)
    x = G(GAN_in)
    GAN_out = D(x)
    GAN = Model(GAN_in, GAN_out)
    GAN.compile(loss='binary_crossentropy', optimizer=G.optimizer)
    return GAN, GAN_out

GAN_in = Input([10])
GAN, GAN_out = make_gan(GAN_in, G, D)
GAN.summary()

#sec
def sample_data_and_gen(G, noise_dim=10, n_samples=10000):
    XT = sample_data(n_samples=n_samples)
    XN_noise = np.random.uniform(0, 1, size=[n_samples, noise_dim])
    XN = G.predict(XN_noise)
    X = np.concatenate((XT, XN))
    y = np.zeros((2*n_samples, 2))
    y[:n_samples, 1] = 1
    y[n_samples:, 0] = 1
    return X, y

def pretrain(G, D, noise_dim=10, n_samples=10000, batch_size=32):
    X, y = sample_data_and_gen(G, n_samples=n_samples, noise_dim=noise_dim)
    set_trainability(D, True)
    D.fit(X, y, epochs=1, batch_size=batch_size)

pretrain(G, D)

#sec
def sample_noise(G, noise_dim=10, n_samples=10000):
    X = np.random.uniform(0, 1, size=[n_samples, noise_dim])
    y = np.zeros((n_samples, 2))
    y[:, 1] = 1
    return X, y

def train(GAN, G, D, epochs=200, n_samples=10000, noise_dim=10, batch_size=32, verbose=False, v_freq=50):
    d_loss = []
    g_loss = []
    e_range = range(epochs)
    if verbose:
        e_range = tqdm(e_range)
    for epoch in e_range:
        X, y = sample_data_and_gen(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, True)
        d_loss.append(D.train_on_batch(X, y))

        X, y = sample_noise(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, False)
        g_loss.append(GAN.train_on_batch(X, y))
        if verbose and (epoch + 1) % v_freq == 0:
            print("Epoch #{}: Generative Loss: {}, Discriminative Loss: {}".format(epoch + 1, g_loss[-1], d_loss[-1]))
    return d_loss, g_loss

d_loss, g_loss = train(GAN, G, D, verbose=True)

#sec
ax = pd.DataFrame(
    {
        'Generative Loss': g_loss,
        'Discriminative Loss': d_loss,
    }
).plot(title='Training loss', logy=True)
ax.set_xlabel("Epochs")
ax.set_ylabel("Loss")
plt.show()

#sec
N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).plot()
plt.show()

#sec
N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).rolling(5).mean()[5:].plot()
plt.show()

参考:

https://blog.csdn.net/tanmx219/article/details/88074600

https://blog.csdn.net/xqf1528399071/article/details/53385593

http://www.rricard.me/machine/learning/generative/adversarial/networks/keras/tensorflow/2017/04/05/gans-part2.html#Imports

Keras入门——(3)生成式对抗网络GAN的更多相关文章

  1. 生成式对抗网络GAN 的研究进展与展望

    生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基 ...

  2. 【CV论文阅读】生成式对抗网络GAN

    生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...

  3. 生成式对抗网络(GAN)实战——书法字体生成练习赛

    https://www.tinymind.cn/competitions/ai 生成式对抗网络(GAN)是近年来大热的深度学习模型. 目前GAN最常使用的场景就是图像生成,作为一种优秀的生成式模型,G ...

  4. 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN

    [前言]      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...

  5. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  6. 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  7. 生成式对抗网络(GAN)学习笔记

    图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的 ...

  8. AI 生成式对抗网络(GAN)

    生成式对抗网络(Generative Adversarial Network,简称GAN),主要由两部分构成:生成模型G和判别模型D.训练GAN就是两种模型的对抗过程. 生成模型:利用任意噪音(ran ...

  9. GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构

    论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...

随机推荐

  1. dwz中的(tree)树形菜单的默认收缩

    做网站后台时,为了方便管理,可能会用到dwz中的树形菜单,如下: 树形菜单的收缩有默认属性值,可以对其进行一定的初始设定: DWZ的树结构是按<ul>,<li>的嵌套格式构成, ...

  2. linux文本处理工具-1

    文件内容: cat ,more,less 文件截取:head,tail 按列抽取:cut 排序和统计:sort,wc ----------------------------------------- ...

  3. 无线连接网络-FAST SSID Change

    这篇随笔主要记录的是Apple设备连接思科无线可能出现的问题,尤其是在思科WLC3504下部署的无线网络,这种故障体现的尤为明显. For Single SSID To support Apple i ...

  4. Java面向对象编程 -2.2

    构造方法与匿名对象 现在的程序在使用类的时候一般都按照了如下的步骤进行: 声明并实例化对象,这个时候实例化对象中的属性并没有任何的数据存在,都是其对于数据类型的默认值 需要通过一系列的setter方法 ...

  5. idea修改项目编码

  6. idea隐藏配置文件

  7. LockSupport源码分析

    LockSupport提供park()和unpark()方法实现线程阻塞和唤醒.底层实现是通过sun.misc.Unsafe的park和unpark. 关于sun.misc.Unsafe的说明请参见我 ...

  8. 改写画质、突破性能, Unity 全面升级!

    技术变革,时代更迭.从<神庙逃亡>.<暗影之枪>等主流手游到独立联网的大型游戏,从绚丽多彩的影视动画到具备极致体验的运输建筑制造行业,从传统的2D 到立体3D 乃至沉浸式的VR ...

  9. 苹果应用商店AppStore审核规则指南

    http://www.zesmob.com/blog/40161.html 新应用上架苹果AppStore或重大版本更新时,往往会被拒多次,造成审核不通过的原因,主要是因为对苹果应用商店AppStor ...

  10. 【剑指Offer面试编程题】题目1362:左旋转字符串--九度OJ

    题目描述: 汇编语言中有一种移位指令叫做循环左移(ROL),现在有个简单的任务,就是用字符串模拟这个指令的运算结果.对于一个给定的字符序列S,请你把其循环左移K位后的序列输出.例如,字符序列S=&qu ...