[BZOJ1415][NOI2005]聪聪与可可
Description

Input
Output
Sample Input
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9
Sample Output
1.500
【输出样例2】
2.167
HINT
【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。
对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。
怎么办啊我太菜了这么简单的题都想不到...
首先用spfa预处理出nxt数组。
nxt[i, j]表示聪聪在i,可可在j,聪聪的下一步调到哪里。
我们对于每个点x都bfs一次,算出所有点到达它的最短路。
然后枚举点y,把x当做可可,y当做聪聪,然后枚举y的所有出边,这些边所到达的点是聪聪可以跳到的。
所以就记录一下最小的dis,如果有更小的dis就更新nxt[y, x],如果有相同的dis,nxt[y, x]就和to取min...
这样处理出来nxt数组后,我们就可以毫无压力的进行dp;
设f[i, j]表示聪聪在i,可可在j,聪聪要吃掉可可的期望步数。
然后推一波公式...
$\LARGE f[i, j]=\frac{\sum_{to}^{ } f[nxt[nxt[i,j],j],to] + f[nxt[nxt[i,j],j],j]}{deg[j]+1} + 1$
然后如果聪聪可可在一个点上那么直接是0, 如果nxt[nxt[i,j],j] = j 或者 nxt[i,j]=j那么直接f[i,j]=1;
这个可以用记忆化搜索实现...
我还是太菜了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define gc getchar()
inline int read(){
int res=;char ch=gc;
while(!isdigit(ch))ch=gc;
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=gc;}
return res;
}
#undef gc int n, m, c, e;
int nxt[][], dis[], deg[];
double f[][];
struct edge{
int nxt, to;
}ed[];
int head[], cnt;
inline void add(int x, int y)
{
ed[++cnt] = (edge){head[x], y};
head[x] = cnt;
} bool ex[];
inline void bfs(int cur)
{
memset(dis, 0x3f, sizeof dis);
memset(ex, , sizeof ex);
dis[cur] = ;
queue <int> q;
q.push(cur);
while(!q.empty())
{
int x = q.front();q.pop();
ex[x] = ;
int tmp = nxt[cur][x];
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
if (dis[to] > dis[x] + )
{
dis[to] = dis[x] + ;
if (!ex[to]) ex[to] = , q.push(to);
}
}
}
for (int x = ; x <= n ; x ++)
{
if (x == cur) continue;
int mn = 1e9;
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
if (dis[to] < mn) mn = dis[to], nxt[x][cur] = to;
else if (dis[to] == mn) if (nxt[x][cur] > to) nxt[x][cur] = to;
}
}
} double dp(int x, int y) //猫的位置x,鼠的位置y
{
if (f[x][y]) return f[x][y];
if (x == y) return ;
if (nxt[nxt[x][y]][y] == y or nxt[x][y] == y) return f[x][y] = ;
double sum = ;
for (int i = head[y] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
sum += dp(nxt[nxt[x][y]][y], to);
}
sum += dp(nxt[nxt[x][y]][y], y);
return f[x][y] = sum / (deg[y] + ) + 1.0;
} int main()
{
n = read(), m = read(), c = read(), e = read(); for (int i = ; i <= m ; i ++)
{
int x = read(), y = read();
add(x, y), add(y, x);
deg[x]++, deg[y]++;
} memset(dis, 0x3f, sizeof dis);
for (int i = ; i <= n ; i ++) bfs(i);
printf("%.3lf\n", dp(c, e));
return ;
}
[BZOJ1415][NOI2005]聪聪与可可的更多相关文章
- 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)
[BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...
- 【bzoj1415】 Noi2005—聪聪和可可
http://www.lydsy.com/JudgeOnline/problem.php?id=1415 (题目链接) 题意 一张图,聪聪想吃可可.每单位时间聪聪可以先移动两次:可可后移动一次或停在原 ...
- bzoj1415[NOI2005]聪聪和可可
之前做的一些图上的期望步数的题大多用到高斯消元来求解(HNOI游走,SDOI走迷宫,etc),因此我一开始做这道题的时候想偏了- 这道题的性质:聪聪和可可之间的最短路长度严格递减.因为聪聪总可以多走一 ...
- 【BZOJ1415】 [Noi2005]聪聪和可可 概率与期望
其实题不难,不知提交了几次...不能代码MD...注意一些基本问题...SB概率题 #include <iostream> #include <cstdio> #include ...
- BZOJ1415[Noi2005]聪聪和可可——记忆化搜索+期望dp
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- 【bzoj1415】[Noi2005]聪聪和可可 期望记忆化搜索
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】
题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- bzoj1415 [Noi2005]聪聪和可可【概率dp 数学期望】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1415 noip2016 D1T3,多么痛的领悟...看来要恶补一下与期望相关的东西了. 这是 ...
- BZOJ 1415: [Noi2005]聪聪和可可( 最短路 + 期望dp )
用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), ...
随机推荐
- Alibaba Cloud Toolkit 一键部署插件使用入门
一.前言 Cloud Toolkit官方介绍文档:https://www.aliyun.com/product/cloudtoolkit Cloud Toolkit 是针对 IDE 平台为开发者提供的 ...
- (转)阿里云CentOS 7下配置及使用mysql
一.安装 1 正确的安装方法: 众所周知,Linux系统自带的repo是不会自动更新每个软件的最新版本(基本都是比较靠后的稳定版),所以无法通过yum方式安装MySQL的高级版本.所以我们需要先安装带 ...
- net core WebApi——定时任务Quartz
目录 前言 Quartz 测试 问题及解决方法 小结 前言 本来打算昨天都开始写这篇,就因为要把小团队的博客整理汇总,一看二哈的博客那么多,一个个复制粘贴肯定麻烦(其实是我自己觉得复制麻烦),所以穿插 ...
- 更改hadoop集群yarn的webui中的开始时间和结束时间为本地时间
yarn集群的webui地址为:http://rm:8088 执行任务后,任务的开始时间和结束时间都是utc时间,查看很不方便. 查找相关资料发现hadoop有补丁包,补丁地址:https://iss ...
- Find the Multiple POJ-1426
题目链接:Find the Multiple 题目大意 找出一个只由0和1组成的能整除n的数. 思路 所有由0和1组成的数可以看作是某个只由0.1组成的数a经过以下两种变化得到 1.a * 10 2. ...
- Python 为什么要保留显式的 self ?
花下猫语:前两天,我偶然在一个知识星球(刘欣老师的"码农翻身")里看到一篇主题,刘老师表示 Python 的类方法非要带个 self,而不像其它语言那样隐藏起来,这让人很不爽.我对 ...
- TensorFlow2.0(三):排序及最大、最小、平均值
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...
- vs code编码设置
在使用vs code(版本1.35.0)打开文件时,出现乱码问题,可通过如下方式设置: 1.针对单个文件 点击右下角的编码按钮(图中为UTF-8),然后选择操作,通过编码重新打开(Reopen wit ...
- Flask基础(15)-->模板代码的复用【宏(Macro)、继承(Block)、包含(include)】
宏 对宏(macro)的理解: 把它看作 Jinja2 中的一个函数,它会返回一个模板或者 HTML 字符串 为了避免反复地编写同样的模板代码,出现代码冗余,可以把他们写成函数以进行重用 需要在多处重 ...
- volatile 关键字的作用
简介Java 语言提供了一种稍弱的同步机制,即 volatile 变量,用来确保将变量的更新操作通知到其他线程.volatile 变量具备两种特性:变量可见性.禁止重排序. 作为同步锁在访问 vola ...