啊。。。好久没写了。。。可能是最后一篇学习笔记了吧

题目大意:给定序列求其在全排列中的排名&&给定排名求排列。

这就是康托展开&&逆康托展开要干的事了。下面依次介绍

一、康托展开

首先,知道它是干嘛的。

就是给定一个全排列之中的序列,求其在整个全排列中的排名。

给出式子:
$k=sum_{i=1}^n(n-i)!\sum_{j=i+1}^n(a_{k,i}>a_{k,j})$

解释一下:考虑这个序列的第i位,对于这个序列,只有前i位都小于等于它,第i位一定小于它的所有序列才会在它前面,于是对每一位考虑组合,就是这个结果了。

代码片:

ll ktz(ll *a)
{
ll ans=;
for(ll i=;i<=n;i++)
{
ll cnt=;
for(ll j=i+;j<=n;j++)
{
if(a[i]>a[j])//对每一位考虑
cnt++;
}
ans+=cnt*fac[n-i];
}
return ans+;//因为求的是前有多少,所有排名+1
}

二、逆康托展开

好了,那有了排名怎么求数组呢?

由上述康托展开可得,要得到数组的每一位,就必须确定前面有多少比它大的。

于是反过来,对每一位考虑可以由多少比它大的,也就是求上述式子中括号里的东西,然后一位一位还原,就成了原序列

过程:首先,同上,-1

然后对每一位,把序号除以对应的fac,确定一个没用过的数,作为当前的答案即可

代码片:

ll nkt(ll k)
{
k-=;
ll j;
memset(vis,,sizeof(vis));
for(ll i=;i<=n;i++)
{
ll s=k/fac[n-i];
for(j=;j<=n;j++)
{
if(!vis[j])
{
if(!s)
break;
s--;
}
}
printf("%d ",j);
vis[j]=;
k%=fac[n-i];
}
printf("\n");
}

(完)

康托展开&逆康托展开学习笔记的更多相关文章

  1. 康拓展开 & 逆康拓展开 知识总结(树状数组优化)

    康拓展开 : 康拓展开,难道他是要飞翔吗?哈哈,当然不是了,康拓具体是哪位大叔,我也不清楚,重要的是 我们需要用到它后面的展开,提到展开,与数学相关的,肯定是一个式子或者一个数进行分解,即 展开. 到 ...

  2. 多项式求逆/分治FFT 学习笔记

    一.多项式求逆 给定一个多项式 \(F(x)\),请求出一个多项式 \(G(x)\), 满足 \(F(x) * G(x) \equiv 1 ( \mathrm{mod\:} x^n )\).系数对 \ ...

  3. Spring学习笔记--spring+mybatis集成

    前言: 技术的发展, 真的是日新月异. 作为javaer, 都不约而同地抛弃裸写jdbc代码, 而用各种持久化框架. 从hibernate, Spring的JDBCTemplate, 到ibatis, ...

  4. Learning hard 学习笔记

    第一章 你真的了解C#吗 1.什么是C#, 微软公司,面向对象,运行于.NET Framework之上, 2.C#能编写哪些应用程序, Windows应用桌面程序,Web应用程序,Web服务, 3.什 ...

  5. LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

    一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...

  6. nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

    讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...

  7. 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)

    描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...

  8. HDU1027 Ignatius and the Princess II( 逆康托展开 )

    链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...

  9. Codeforces-121C(逆康托展开)

    题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...

随机推荐

  1. Unicode 和 UTF-8 之间的关系

    一.ASCII 码 我们知道,计算机内部,所有信息最终都是一个二进制值.每一个二进制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte).也就是说,一个 ...

  2. Windows 10 更新后VMware Workstation pro无法运行 (无需卸载原版本VM)

    问题 描述:当前Windows版本是win10-1903,VMware版本比较老旧是VMware Workstation Pro 15.0.4:国庆节后微软推送了一个新的更新补丁,10月10日更新之后 ...

  3. x509: certificate is valid for 10.96.0.1, 172.18.255.243, not 120.79.23.226

    服务器:阿里云服务器 master:120.79.23.226 node:39.108.131.246 系统:Centos 7.4 node节点加入集群中是报错: x509: certificate ...

  4. Vue中插槽指令

    08.29自我总结 Vue中插槽指令 意义 就是在组件里留着差值方便后续组件内容新增 而且由于插件是写在父级中数据可以直接父级中传输而不需要传子再传父有些情况会减少写代码量 示例 <div id ...

  5. 《锋利的jQuery》学习总结

    通过对<锋利的jQuery>(第二版)一书的学习,发现此书讲解通俗易懂,是学习jQuery的一本很好的指导书,特作如下总结.此书主要讲解了jQuery的常用操作,包括认识jQuery,jQ ...

  6. 在Ubuntu16.0.4安装hipcaffe

    1. 安装 AMD ROCm 显卡条件 要安装AMD的 ROCm显卡,必须满足以下条件,只能高于下面信息版本,不能低于. Distribution Kernel GCC GLIBC x86_64 Fe ...

  7. 02jmeter-函数助手使用

    示例:__Random函数 1.打开函数助手,并按提示写入value 2.引用.复制出${__Random(1,99,gp)}放到需要引用的地方 3.请求成功后可通过debug sampler查看变量 ...

  8. 15.Linux软件管理

    1.什么是rpm? rpm软件包的组成部分有哪些? redhat packages manager 红帽推出软件包管理工具... rpm工具 xxxxx.rpm bash-4.2.46-28.el7. ...

  9. vue系列---响应式原理实现及Observer源码解析(一)

    _ 阅读目录 一. 什么是响应式? 二:如何侦测数据的变化? 2.1 Object.defineProperty() 侦测对象属性值变化 2.2 如何侦测数组的索引值的变化 2.3 如何监听数组内容的 ...

  10. maven 打包 spring boot 生成docker 镜像

    1.所使用材料 ,spring boot 项目 基于maven ,maven 工具, docker工具 ps:为啥使用 docker 公司微服务需要启动太多,有两个优点吧! 1.方便管理,2.减少服务 ...