动机:作者认为,基于块的压缩会产生一种伪结构(pseudo structures),并且不同程度压缩产生的伪结构具有一定的相似性。那么,我们就可以通过检测伪结构相似性,来评估压缩图像质量。

检测方法:将压缩图像进行最大程度压缩,得到most distorted image(MDI);然后再计算压缩前后的相似性,即pseudo structural similarity(PSS)。如果压缩图像本身质量很差,那么相似度就会很高。

意义:该方法不仅对于自然压缩图像很有效,而且对screen content image(SCI)也很有效。

本文考虑JPEG压缩图像。

【本文似乎主要考虑块效应,因为作者强调伪结构出现在块边缘。其实还有块内模糊可以考虑】

1. 技术细节

1.1 得到MDI

首先,PSS的意义在于利用了质量坐标的另一个方向,从而实现盲IQA:

具体而言,MDI是通过MATLAB的imwrite函数,设置质量为0压缩得到的。

1.2 判别伪结构,计算伪结构相似性

[14]指出:自然图像中的角(corner)分布是不规律的。但对于JPEG压缩图像,角就变得规律了。这是因为压缩引入了大量伪角,且主要集中在块边缘。[14]就是用规律的角的占比,来刻画压缩失真程度。

本文的判别方式简单粗暴【但不准确】:只要检测到的角分布在\(8 \times 8\)边缘上,那么就被判定为伪结构;否则就判定为正常结构。这样,我们就能得到一个伪结构图:

可以从图中看到,但压缩越剧烈、质量越差时,压缩图像和MDI重合的伪结构就越多(红色代表重合点)。

检测角的方法借助[17]。

进一步,PSS就是 重合伪结构的数目 除以 MDI中伪结构的数目。

2. 实验

实验效果不是最佳的,只是和SOTA方法[7]不相上下。注意,在SCI上测试同样不错。

此外,作者还将这种思路用于检测一般失真。做法是:在一些基于特征的NR方法基础上,将PSS作为一个新的特征。从表2可以看出,PSS特征通常能显著改善 基于特征的NR方法 的性能。

Paper | BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY的更多相关文章

  1. Paper | Blind Quality Assessment Based on Pseudo-Reference Image

    目录 1. 技术细节 1.1 失真识别 1.2 得到对应的PRI并评估质量 块效应 模糊和噪声 1.3 扩展为通用的质量评价指标--BPRI 归一化3种质量评分 判断失真类型 加权求和 2. 总结 这 ...

  2. Paper | No-reference Quality Assessment of Deblocked Images

    目录 故事背景 本文方法(DBIQ) 发表在2016年Neurocomputing. 摘要 JPEG is the most commonly used image compression stand ...

  3. Paper | MFQE 2.0: A New Approach for Multi-frame Quality Enhancement on Compressed Video

    目录 1. 要点 2. 压缩视频特性分析 2.1 质量波动 2.2 帧间相关性 3. 方法 3.1 分类器 3.2 好帧运动补偿 3.3 质量增强网络 4. 实验 4.1 差帧质量提升效果 4.2 总 ...

  4. [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (1)

    Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. Methodologies for data ...

  5. Paper | Predicting the Quality of Images Compressed After Distortion in Two Steps

    目录 1. 问题本质剖析 2. 方法细节 图像质量评估大佬AC Bovik的论文,发表在2019 TIP上. 考虑的问题:对于有参考图像质量评估(R-IQA)任务,参考图像有时是有损的.这会导致评估的 ...

  6. Paper | Quality assessment of deblocked images

    目录 1. 故事 2. 失真变化 3. 方法(PSNR-B) 4. 实验 这篇文章提出了一个PSNR-B指标,旨在衡量 压缩图像的块效应强度 或 去块效应后的残留块效应强度(比较去块效应算法的优劣). ...

  7. Quality assessment and quality control of NGS data

    http://www.molecularevolution.org/resources/activities/QC_of_NGS_data_activity_new table of contents ...

  8. [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (2)

    本篇博文主要对DMQ(S3.7)的分类进行了研读. 1. 这个章节提出了一种DQM的分类法(如下图) 由上图可见,该分类法的分类标准是对assessment & improvement阶段的支 ...

  9. Paper | 帧间相关性 + 压缩视频质量增强(MFQE)

    目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 3.1. Quality Enhancement 3.2. Multi-frame Super-reso ...

随机推荐

  1. Python进阶小结

    目录 一.异常TODO 二.深浅拷贝 2.1 拷贝 2.2 浅拷贝 2.3 深拷贝 三.数据类型内置方法 3.1 数字类型内置方法 3.1.1 整型 3.1.2 浮点型 3.2 字符串类型内置方法 3 ...

  2. linux系列之常用运维命令整理笔录

    目录 本博客记录工作中需要的linux运维命令,大学时候开始接触linux,会一些基本操作,可是都没有整理起来,加上是做开发,不做运维,有些命令忘记了,所以现在整理成博客,当然vi,文件操作等就不介绍 ...

  3. Octave Convolution详解

    前言 Octave Convolution来自于这篇论文<Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural ...

  4. [IDA]修改变量类型、删除变量名

    1. 双击变量 2. 按D转换类型(Word.Byte.Dword) 3. 按U删除变量名 4. 按N修改变量名

  5. 屏幕输入转换为int//方法大注释

    可以使用两种方法: using System; namespace 方法测试 { class Program { static void Main(string[] args) { Console.W ...

  6. Gallery -- 横向不断滚动 demo

    <%@ Page Language="C#" AutoEventWireup="true" %> <!DOCTYPE html> < ...

  7. PHP作用域和文件夹操作

    1.作用域      1.1变量作用域      1.全局变量:在函数外面       2.局部变量:在函数里面,默认情况下,函数内部是不会访问函数外部的变量       3.超全局变量:可以在函数内 ...

  8. django5-书籍与出版社关联外键

    1.外键相关 一对多的概念 ,这里是一个出版社对应本书籍 ! 设计表使用model models.ForeignKey('关联一', on_delete=models.CASCADE) #给多设置外键 ...

  9. FCC---Animate Elements Continually Using an Infinite Animation Count---设置animation-iteration-count的次数为无限,让小球一直跳动

    The previous challenges covered how to use some of the animation properties and the @keyframes rule. ...

  10. ListView详细介绍与使用

    前言介绍: 关于 ListView 我们大家都应该是非常的熟悉了,在 Android 开发中是经常用到的,今天就再来回顾一下,ListView 的使用方法,和一些需要优化注意的地方,还有日常开发过程中 ...