题目大意:

给定\(1\)到\(n\)的一个排列,按照给定顺序依次删除\(m\)个元素,计算每个元素删除之前整个序列的逆序对数量

基本套路:删边变加边

那么我们不就是求满足\(pos_i<pos_j,tim_i<tim_j,num_i>num_j\)的数量嘛

先按\(tim\)排序,然后归并\(pos_i\),树状数组\(num_i\)

不过这道题我们需要正反跑两个\(cdq\),因为我们需要分开统计\(pos_i<pos_j,num_i>num_j\)和\(pos_i>pos_j,num_i<num_j\)的贡献

但是我压缩到一个\(cdq\)里了\(emmmm\)

需要稍微注意的一点是,我们需要把答案累加的令一个\(ret_i\)数组中,其中\(ret_i\)表示在\(i\)时刻新产生了多少逆序对,最后还需要输出前缀和

不粘代码是不是太短了

#include<bits/stdc++.h>
using namespace std;
namespace red{
#define int long long
#define mid ((l+r)>>1)
#define lowbit(x) ((x)&(-x))
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
const int N=1e5+10;
int n,m,idx,tot;
int pos[N];
int st[N];
int ret[N];
struct point
{
int x,id,tim;
int val;
inline bool operator < (const point &t) const
{
if(tim^t.tim) return tim<t.tim;
return id<t.id;
}
}a[N<<2],t[N<<2];
int tr[N<<1];
inline void update(int x,int k)
{
for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=k;
}
inline int query(int y)
{
int ret=0;
for(int i=y;i;i-=lowbit(i))
ret+=tr[i];
return ret;
}
inline void cdq(int l,int r)
{
if(l==r) return;
cdq(l,mid);
cdq(mid+1,r);
int tl=l,tr=mid+1,tot=l;
while(tl<=mid&&tr<=r)
{
if(a[tl].id<=a[tr].id) update(a[tl].x,1),t[tot++]=a[tl++];
else ret[a[tr].tim]+=query(n)-query(a[tr].x),t[tot++]=a[tr++];
}
while(tl<=mid) update(a[tl].x,1),t[tot++]=a[tl++];
while(tr<=r) ret[a[tr].tim]+=query(n)-query(a[tr].x),t[tot++]=a[tr++];
for(int i=l;i<=mid;++i) update(a[i].x,-1);
tl=mid,tr=r;
while(tl>=l&&tr>=mid+1)
{
if(a[tl].id>=a[tr].id) update(a[tl].x,1),--tl;
else ret[a[tr].tim]+=query(a[tr].x-1),--tr;
}
while(tl>=l) update(a[tl].x,1),--tl;
while(tr>=mid+1) ret[a[tr].tim]+=query(a[tr].x-1),--tr;
for(int i=l;i<=mid;++i) update(a[i].x,-1);
for(int i=l;i<=r;++i) a[i]=t[i];
}
inline void main()
{
n=read(),m=read();
for(int x,i=1;i<=n;++i)
{
x=read();
pos[x]=i;
a[i].x=x;
a[i].id=i;
a[i].tim=1;
}
for(int x,tmp,i=1;i<=m;++i)
{
x=read();
tmp=pos[x];
a[tmp].tim=m-i+2;
}
sort(a+1,a+n+1);
cdq(1,n);
for(int i=1;i<=m+1;++i) ret[i]+=ret[i-1];
for(int i=m+1;i>=2;--i) printf("%lld\n",ret[i]);
}
}
signed main()
{
red::main();
return 0;
}

洛谷P3157 [CQOI2011]动态逆序对的更多相关文章

  1. 洛谷 P3157 [CQOI2011]动态逆序对 解题报告

    P3157 [CQOI2011]动态逆序对 题目描述 对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数.给\(1\)到\(n ...

  2. 洛谷 P3157 [CQOI2011]动态逆序对(树套树)

    题面 luogu 题解 树套树(树状数组套动态开点线段树) 静态使用树状数组求逆序对就不多说了 用线段树代替树状数组,外面套树状数组统计每个点逆序对数量 设 \(t1[i]\)为\(i\)前面有多少个 ...

  3. 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治

    题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...

  4. P3157 [CQOI2011]动态逆序对(树状数组套线段树)

    P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...

  5. P3157 [CQOI2011]动态逆序对

    P3157 [CQOI2011]动态逆序对 https://www.luogu.org/problemnew/show/P3157 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai&g ...

  6. P3157 [CQOI2011]动态逆序对 (CDQ解决三维偏序问题)

    P3157 [CQOI2011]动态逆序对 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任 ...

  7. [Luogu P3157][CQOI2011]动态逆序对 (树套树)

    题面 传送门:[CQOI2011]动态逆序对 Solution 一开始我看到pty巨神写这套题的时候,第一眼还以为是个SB题:这不直接开倒车线段树统计就完成了吗? 然后冷静思考了一分钟,猛然发现单纯的 ...

  8. luogu P3157 [CQOI2011]动态逆序对(CDQ分治)

    题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...

  9. Luogu P3157 [CQOI2011]动态逆序对

    题目链接 \(Click\) \(Here\) 这个题有点卡常数..我的常数比较大所以是吸着氧气跑过去的... 题意:计算对于序列中每个位置\(p\),\([1,p-1]\)区间内比它大的数的个数,和 ...

随机推荐

  1. Go module的两个代理源和设置方法

    Go module的两个代理源 阿里云 https://mirrors.aliyun.com/goproxy/ 使用帮助 1.使用go1.11以上版本并开启go module机制 2.导出GOPROX ...

  2. Codeforces Round #598 (Div. 3) E. Yet Another Division Into Teams dp

    E. Yet Another Division Into Teams There are n students at your university. The programming skill of ...

  3. golang数据结构之栈

    stack.go package stack import ( "errors" "fmt" ) type Stack struct { MaxTop int ...

  4. 如何将Azure SQL 数据库还原到本地数据库实例中

    原文:https://www.jerriepelser.com/blog/restore-sql-database-localdb/ 原文作者: Jerrie Pelser 译文:如何将Azure S ...

  5. 【计算机网络】WebSocket实现原理分析

    1.介绍一下websocket和通信过程? 1.1 基本概念 [!NOTE] Websocket是应用层第七层上的一个应用层协议,它必须依赖 HTTP 协议进行一次握手 ,握手成功后,数据就直接从 T ...

  6. ASP.NET Core 如何用 Cookie 来做身份验证

    前言 本示例完全是基于 ASP.NET Core 3.0.本文核心是要理解 Claim, ClaimsIdentity, ClaimsPrincipal,读者如果有疑问,可以参考文章 理解ASP.NE ...

  7. 数据库——数据库设计 E-R图向关系模型的转换

    1.将下列物资管理E-R图转换为关系模式: 转换原则 ⒈  一个实体型转换为一个关系模式.关系的属性:实体型的属性关系的码:实体型的码   ⒉ 一个m:n联系转换为一个关系模式(初步,以后可能调整). ...

  8. Java匹马行天下之学编程的起点——编程常识知多少

    学编程的起点——编程常识知多少 前言: 刚去大学那会,我就知道我被录取的学院是软件学院,还知道一点就是软件学院主要是学电脑的,但具体要学什么其实一无所知.待的时间久了,慢慢的,像“编程”.“软件”.“ ...

  9. C# 校验并转换 16 进制字符串到字节数组

    问题 最近在进行硬件上位机开发的时候,经常会遇到将 16 进制字符串转换为 byte[] 的情况,除了这种需求以外,还需要判定一个字符串是否是有效的 16 进制数据. 解决 字符串转 byte[] 的 ...

  10. 终于我还是没忍住,用Python爬了一波女神

    你学爬虫,最终不还是为了爬妹子 啥也不说,开始福利赠送~ 女神大会 不是知道有多少人知道“懂球帝”这个 APP(网站),又有多少人关注过它的一个栏目“女神大会”,在这里,没有足球,只有女神哦. 画风是 ...