功能介绍

写了I/O函数,支持以下几种方式

 read(num);    //读入一个数num(任意整数类型,下同)
read(num1,num2,num3,num4); //读入任意多个数
read(arr,n); //对一个整数数组arr读入n个值,[0,n-1]
read(arr,first,last); //对一个整数数组arr读入区间last-first+1个值,[first,last]
read(s); //读入一个字符串数组(string和char数组都支持)
print(num); //输出一个数num
print(num1,num2,num3,num4); //输出任意多个数,中间用空格隔开
print(arr,n); //对一个整数数组arr输出n个值,[0,n-1],中间用空格隔开
print(arr,first,last); //对一个整数数组arr输出last-first+1个值,[first,last],中间用空格隔开
10 //read()有返回值,遇到EOF返回0。多组数据时可以放心使用while(read(n)){}
//至于字符串的输出没有进行优化,测试显示直接cout或者printf比较快

关于define nc getchar,是因为用到了fread,本地调试时候请不要注释,否则无法从键盘读入数据,提交时注释这句话即可。

支持以下几个函数

 gcd(a,b); //求两数gcd(任意整数类型,下同)
lowbit(x); //求一个整数的lowbit
mishu(x); //判断一个数是不是2的幂
q_mul(a,b,p); //求(a*b)%p的值,防止溢出,O(logN)
f_mul(a,b,p); //求(a*b)%p的值,防止溢出,O(1),可能丢失精度
q_pow(a,b,p); //求(a^b)%p的值,不防溢出,O(logN)
s_pow(a,b,p); //求(a^b)%p的值,防溢出,O(logN*logN)
ex_gcd(a,b,x,y); //扩展GCD
com(m,n); //求C(m,n)
isprime(num); //判断一个数是否质数

其他一些宏定义自行查看即可了解,大部分的东西我都尽可能的进行了优化,之前有个很冗长的,现在修改成这样了,基本也就是最终版本。

 //XDDDDDDi
#include <bits/stdc++.h>
using namespace std;
#define PB push_back
#define MT make_tuple
#define MP make_pair
#define pii pair<int,int>
#define pdd pair<double,double>
#define F first
#define S second #define MOD 1000000007
#define PI (acos(-1.0))
#define EPS 1e-6
#define MMT(s,a) memset(s, a, sizeof s)
#define GO(i,a,b) for(int i = (a); i < (b); ++i)
#define GOE(i,a,b) for(int i = (a); i <= (b); ++i)
#define OG(i,a,b) for(int i = (a); i > (b); --i)
#define OGE(i,a,b) for(int i = (a); i >= (b); --i) typedef unsigned long long ull;
typedef long long ll;
typedef double db;
typedef long double ldb;
typedef stringstream sstm;
int fx[][] = {{,},{-,},{,},{,-},{,},{,-},{-,-},{-,}}; template<typename T> using maxHeap = priority_queue<T, vector<T>, less<T> >;
template<typename T> using minHeap = priority_queue<T, vector<T>, greater<T> >; inline char nc(){ static char buf[], *p1 = buf, *p2 = buf; return p1 == p2 && (p2 = (p1 = buf) + fread(buf,,,stdin),p1 == p2) ? EOF : *p1++; }
#define nc getchar
template<typename T> inline int read(T& sum){ char ch = nc(); if(ch == EOF || ch == -) return ; int tf = ; sum = ; while((ch < '' || ch > '') && (ch != '-')) ch = nc(); tf = ((ch == '-') && (ch = nc())); while(ch >= '' && ch <= '') sum = sum* + (ch-), ch = nc(); (tf) && (sum = -sum); return ; }
template<typename T,typename... Arg> inline int read(T& sum,Arg&... args){ int ret = read(sum); if(!ret) return ; return read(args...); }
template<typename T1,typename T2> inline void read(T1* a,T2 num){ for(int i = ; i < num; i++){read(a[i]);} }
template<typename T1,typename T2> inline void read(T1* a,T2 bn,T2 ed){ for(;bn <= ed; bn++){read(a[bn]);} }
inline void read(char* s){ char ch = nc(); int num = ; while(ch != ' ' && ch != '\n' && ch != '\r' && ch != EOF){s[num++] = ch;ch = nc();} s[num] = '\0'; }
inline void read(string& s){ static char tp[]; char ch = nc(); int num = ; while(ch != ' ' && ch != '\n' && ch != '\r' && ch != EOF){tp[num++] = ch;ch = nc();} tp[num] = '\0'; s = (string)tp; }
template<typename T> inline void print(T k){ int num = ,ch[]; if(k == ){ putchar(''); return ; } (k<)&&(putchar('-'),k = -k); while(k>) ch[++num] = k%, k /= ; while(num) putchar(ch[num--]+); }
template<typename T,typename... Arg> inline void print(T k,Arg... args){ print(k),putchar(' '); print(args...);}
template<typename T1,typename T2> inline void print(T1* a,T2 num){ print(a[]); for(int i = ; i < num; i++){putchar(' '),print(a[i]);} }
template<typename T1,typename T2> inline void print(T1* a,T2 bn,T2 ed){ print(a[bn++]); for(;bn <= ed; bn++){putchar(' '),print(a[bn]);} }
/*math*/
template<typename T> inline T gcd(T a, T b){ return b== ? a : gcd(b,a%b); }
template<typename T> inline T lowbit(T x){ return x&(-x); }
template<typename T> inline bool mishu(T x){ return x>?(x&(x-))==:false; }
template<typename T1,typename T2, typename T3> inline ll q_mul(T1 a,T2 b,T3 p){ ll w = ; while(b){ if(b&) w = (w+a)%p; b>>=; a = (a+a)%p; } return w; }
template<typename T,typename T2> inline ll f_mul(T a,T b,T2 p){ return (a*b - (ll)((long double)a/p*b)*p+p)%p; }
template<typename T1,typename T2, typename T3> inline ll q_pow(T1 a,T2 b,T3 p){ ll w = ; while(b){ if(b&) w = (w*a)%p; b>>=; a = (a*a)%p;} return w; }
template<typename T1,typename T2, typename T3> inline ll s_pow(T1 a,T2 b,T3 p){ ll w = ; while(b){ if(b&) w = q_mul(w,a,p); b>>=; a = q_mul(a,a,p);} return w; }
template<typename T> inline ll ex_gcd(T a, T b, T& x, T& y){ if(b == ){ x = , y = ; return (ll)a; } ll r = exgcd(b,a%b,y,x); y -= a/b*x; return r;/*gcd*/ }
template<typename T1,typename T2> inline ll com(T1 m, T2 n) { int k = ;ll ans = ; while(k <= n){ ans=((m-k+)*ans)/k;k++;} return ans; }
template<typename T> inline bool isprime(T n){ if(n <= ) return n>; if(n% != && n% != ) return ; T n_s = floor(sqrt((db)(n))); for(int i = ; i <= n_s; i += ){ if(n%i == || n%(i+) == ) return ; } return ; }
/* ----------------------------------------------------------------------------------------------------------------------------------------------------------------- */ int main() { return ;
}

ACM代码模板的更多相关文章

  1. ACM、OI、OJ题目常用代码模板

    仓库源码地址:https://github.com/richenyunqi/code-templates 本仓库主要提供 ACM.OI.OJ.PAT.CSP 题目中常见算法和数据结构的实现,它们都以基 ...

  2. 关于ACM,关于CSU

    原文地址:http://tieba.baidu.com/p/2432943599 前言: 即将进入研二,ACM的事情也渐渐远去,记忆终将模糊,但那段奋斗永远让人热血沸腾.开个贴讲讲ACM与中南的故事, ...

  3. 制作代码模板的 LaTex 模板

    Tex 真的是一个用起来非常舒服的排版工具(对于排版要求高的人来说),去比赛前一天放弃了markdown转pdf来生成代码模板,现学Tex(其实美赛已经用过了:P). 推荐一个链接:TeX - Bea ...

  4. 2079 ACM 选课时间 背包 或 母函数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2079 题意:同样的学分 ,有多少种组合数,注意同样学分,课程没有区别 思路:两种方法 背包 母函数 背包: ...

  5. 「浙江理工大学ACM入队200题系列」问题 E: 零基础学C/C++78——求奇数的乘积

    本题是浙江理工大学ACM入队200题第八套中的E题 我们先来看一下这题的题面. 题面 输入 输入数据包含多个测试实例,每个测试实例占一行,每行的第一个数为n,表示本组数据一共有n个,接着是n个整数,你 ...

  6. SCNU ACM 2016新生赛决赛 解题报告

    新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...

  7. SCNU ACM 2016新生赛初赛 解题报告

    新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...

  8. acm结束了

    最后一场比赛打完了.之前为了记录一些题目,开了这个博客,现在结束了acm,这个博客之后也不再更新了. 大家继续加油!

  9. 关于ACM的总结

    看了不少大神的退役帖,今天终于要本弱装一波逼祭奠一下我关于ACM的回忆. 从大二上开始接触到大三下结束,接近两年的时间,对于大神们来说两年的确算不上时间,然而对于本弱来说就是大学的一半时光.大一的懵懂 ...

随机推荐

  1. 从零写一个编译器(十一):代码生成之Java字节码基础

    项目的完整代码在 C2j-Compiler 前言 第十一篇,终于要进入代码生成部分了,但是但是在此之前,因为我们要做的是C语言到字节码的编译,所以自然要了解一些字节码,但是由于C语言比较简单,所以只需 ...

  2. MySQL多表关联数据同时删除

    MySQL多表关联时的多表删除: DELETE t1, t2FROM    t1LEFT JOIN t2 ON t1.id = t2.idWHERE    t1.id = 25

  3. C#之项目常用方法之静态扩展

    一般项目中我们经常用到数据Json的序列化与反序列化,为了方便在需要的地方快速使用,一般建议都封装为静态扩展方法,在需要的地方可直接使用. 而目前C#项目中序列化一般都是用的 Newtonsoft.J ...

  4. yolo v2

    https://blog.csdn.net/wfei101/article/details/79398563 https://blog.csdn.net/oppo62258801/article/de ...

  5. Spring学习之旅(十四)--缓存

    数据库的读写并发一直都是应用性能的瓶颈所在之一,针对改动频率很小的数据我们应该将他存放到缓存中,减少与数据库的交互. 启用对缓存的支持 Spring 对缓存的支持有两种方式: 注解驱动的缓存 XML ...

  6. 利用ShardingSphere-JDBC实现分库分表--配置中心的实现

    在之前的文章中我详细描述了如何利用ShardingSphere-JDBC进行分库分表,同时也实现了简单的精确分库算法接口,详情见下面的链接: 利用ShardingSphere-JDBC实现分库分表 但 ...

  7. ionic 技术要点

    1.当遇到数据模型改变了,但是页面渲染的数据却没有改变的时候,尝试执行 $scope.$apply(): 2.时间的定义及监听: 定义事件 showNewMsg并从scope往下广播: $scope. ...

  8. 做「容量预估」可没有true和false

    如果第二次看到我的文章,欢迎右侧扫码订阅我哟~ 

  9. Codeforces 396C

    题意略. 思路: 将树上的节点编好dfs序,然后就可以用树状数组区间修改点查询了. 我们用 lft[v] 和 rht[v]来表示v的子树在dfs序中的左端和右端,这样才方便我们对树状数组的操作. 其实 ...

  10. JNI开发流程

    交叉编译 在一个平台上去编译另一个平台上可以执行的本地代码 cpu平台 arm x86 mips 操作系统平台 windows linux mac os 原理 模拟不同平台的特性去编译代码 jni开发 ...