为什么要了解点数学基础

学习大数据分布式计算时多少会涉及到机器学习的算法,所以理解一些机器学习基础,有助于理解大数据分布式计算系统(比如spark)的设计。机器学习中一个常见的就是gradient descent算法,是线性回归问题的一个基础算法。gradient是数学概念。

Gradient

如果一个函数有n个自变量:f(x1,x2......xn)。且每一个x都是标量值。那么该函数的gradient就是一个n维的向量函数,每一个component是f函数针对xi的partial derivative。f的gradient反映的是f针对全部变量在各自维度的变化的敏感程度(以及正负相关性。即当自变量添加时,f值是添加还是减小,下同。

gradient所反映的正负相关性非常重要,是理解gradient descent算法的一个关键)的合集。f的gradient记为∇f

Partial Derivative

partial derivative是derivative的一个延伸概念,是一个有n维变量的函数f(x1,x2......xn)。在如果其它变量值不变、仅有一个变量(如果为xi)变化的情况下,f函数针对该变量的derivative,写为f′(xi),或者∂f∂xi,f(x1,x2......xn)对xi的partial derivative也是xi的函数,它反映的是f相对于xi的变化的敏感程度(以及正负相关性)。

Derivative

一个一维变量的函数f(x)的derivative,反映的是f(x)在x的不同值的情况下,当x仅作无限小的变化时。f值的变化与x的变化的比值,因此derivative反映的是f(x)在x的不同值的情况下,f(x)对x的变化的敏感程度(以及正负相关性)。

f(x)的derivative也是x的函数,写为f′(x).

Gradient Descent算法

线性回归问题能够归结为求一个函数f(x1,x2......xn)的(x1,x2......xn)的某一个详细的值,使得f有最小值。

如果把这个求解问题交给你,你能求出来吗?非常难把,

而gradient descent算法则能解决问题。

……待续

机器学习数学基础- gradient descent算法(上)的更多相关文章

  1. (二)深入梯度下降(Gradient Descent)算法

    一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...

  2. CS229 2.深入梯度下降(Gradient Descent)算法

    1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...

  3. 梯度下降(gradient descent)算法简介

    梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...

  4. 梯度下降(Gradient descent)

    首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间 ...

  5. 基于baseline、svd和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.3部分内容(其余部分会陆续补充上来).koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目 ...

  6. 基于baseline和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...

  7. 机器学习(1)之梯度下降(gradient descent)

    机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...

  8. 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  9. 斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

随机推荐

  1. bzoj 1468

    大概思路:树点分治,重心树中每个重心维护一个总的平衡树,树中保存属于该重心的点到该重心的距离,然后对于去掉该重心后形成的子树分别再保存一份. 用这种方式实现的话,还可以支持修改与多次查询,每次操作都是 ...

  2. MariaDB 主从复制

    MySQL Replication:NySQL复制,MySQL的复制默认为异步工作模式    mysql的复制功能是mysql内置的,装上它之后就具备了这个功能,而mysql复制是mysql实现大规模 ...

  3. CentOS 6.9设置阿里云源/163源

    阿里云: 1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2.下载新的CentOS ...

  4. 开发笔记:python与随机数(转)

    这些天需要用到从一堆数中随机提取几个数,于是重新研究了下random模块. 下面介绍下random中常见的函数. 前提:需要导入random模块 >>>import random 1 ...

  5. Cascode MOSFET increases boost regulator's input- and output-voltage ranges

    Targeting use in portable-system applications that require raising a battery's voltage to a higher l ...

  6. ZigBee和Z-Wave的区别与未来

    http://tech.c114.net/164/a702667.html ZigBee和Z-Wave短距离无线技术都用于远程监控和控制,但两种技术的规格和应用却不同.在美国应用越来越广泛的家庭局域网 ...

  7. IPC low/medium/high density 什么意思?

    http://wiki.altium.com/pages/viewpage.action?pageId=3080344 Land Pattern Information Density Level A ...

  8. Android SDK Manager 代理服务器设置

    http://blog.csdn.net/star_splendid/article/details/6939063 自己机子更新的话,速度1KB/s 实在是等不及了~找方法吧 http://www. ...

  9. ASPNET CORE初探

    ASP.NET Core 开发-中间件(Middleware)   ASP.NET Core开发,开发并使用中间件(Middleware). 中间件是被组装成一个应用程序管道来处理请求和响应的软件组件 ...

  10. C语言中常用计时方法总结

    转自:http://blog.csdn.net/fz_ywj/article/details/8109368 C语言中常用计时方法总结 1. time() 头文件:time.h 函数原型:time_t ...