Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。

for - else

什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是合法的。十大装B语法,for-else 绝对算得上南无湾!不信,请看:

>>> for i in [1,2,3,4]:
print(i)
else:
print(i, '我是else') 1
2
3
4
4 我是else

如果在 for 和 else 之间(循环体内)有第三者 if 插足,也不会影响 for 和 else 的关系。因为 for 的级别比 if 高,else 又是一个攀附权贵的家伙,根本不在乎是否有 if,以及是否执行了满足 if 条件的语句。else 的眼里只有 for,只要 for 顺利执行完毕,else 就会屁颠儿屁颠儿地跑一遍:

>>> for i in [1,2,3,4]:
if i > 2:
print(i)
else:
print(i, '我是else') 3
4
4 我是else

那么,如何拆散 for 和 else 这对冤家呢?只有当 for 循环被 break 语句中断之后,才会跳过 else 语句:

>>> for i in [1,2,3,4]:
if i>2:
print(i)
break
else:
print(i, '我是else') 3

一颗星()和两颗星()*

有没有发现,星(*)真是一个神奇的符号!想一想,没有它,C语言还有啥好玩的?同样,因为有它,Python 才会如此的仪态万方、风姿绰约、楚楚动人!Python 函数支持默认参数和可变参数,一颗星表示不限数量的单值参数,两颗星表示不限数量的键值对参数。我们还是举例说明吧:设计一个函数,返回多个输入数值的和。我们固然可以把这些输入数值做成一个list传给函数,但这个方法,远没有使用一颗星的可变参数来得优雅:

>>> def multi_sum(*args):
s = 0
for item in args:
s += item
return s >>> multi_sum(3,4,5)
12

Python 函数允许同时全部或部分使用固定参数、默认参数、单值(一颗星)可变参数、键值对(两颗星)可变参数,使用时必须按照前述顺序书写。

>>> def do_something(name, age, gender='男', *args, **kwds):
print('姓名:%s,年龄:%d,性别:%s'%(name, age, gender))
print(args)
print(kwds) >>> do_something('xufive', 50, '男', 175, 75, math=99, english=90)
姓名:xufive,年龄:50,性别:男
(175, 75)
{'math': 99, 'english': 90}

三元表达式

熟悉 C/C++ 的程序员,初上手 python 时,一定会怀念经典的三元操作符,因为想表达同样的思想,用python 写起来似乎更麻烦。比如:

>>> y = 5
>>> if y < 0:
print('y是一个负数')
else:
print('y是一个非负数') y是一个非负数

其实,python 是支持三元表达式的,只是稍微怪异了一点,类似于我们山东人讲话。比如,山东人最喜欢用倒装句:打球去吧,要是不下雨的话;下雨,咱就去自习室。翻译成三元表达式就是:

打球去吧 if 不下雨 else 去自习室

来看看三元表达式具体的使用:

>>> y = 5
>>> print('y是一个负数' if y < 0 else 'y是一个非负数')
y是一个非负数

python 的三元表达式也可以用来赋值:

>>> y = 5
>>> x = -1 if y < 0 else 1
>>> x
1

with - as

with 这个词儿,英文里面不难翻译,但在 Python 语法中怎么翻译,我还真想不出来,大致上是一种上下文管理协议。作为初学者,不用关注 with 的各种方法以及机制如何,只需要了解它的应用场景就可以了。with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:

fp = open(r"D:\CSDN\Column\temp\mpmap.py", 'r')
try:
contents = fp.readlines()
finally:
fp.close()

如果使用 with - as,那就优雅多了:

>>> with open(r"D:\CSDN\Column\temp\mpmap.py", 'r') as fp:
contents = fp.readlines()

列表推导式

在各种稀奇古怪的语法中,列表推导式的使用频率应该时最高的,对于代码的简化效果也非常明显。比如,求列表各元素的平方,通常应该这样写(当然也有其他写法,比如使用map函数):

>>> a = [1, 2, 3, 4, 5]
>>> result = list()
>>> for i in a:
result.append(i*i) >>> result
[1, 4, 9, 16, 25]

如果使用列表推导式,看起来就舒服多了:

>>> a = [1, 2, 3, 4, 5]
>>> result = [i*i for i in a]
>>> result
[1, 4, 9, 16, 25]

事实上,推导式不仅支持列表,也支持字典、集合、元组等对象。有兴趣的话,可以自行研究。我有一篇博文《一行 Python 代码能实现什么丧心病狂的功能?》,里面的例子,都是列表推导式实现的。

列表索引的各种骚操作

Python 引入负整数作为数组的索引,这绝对是喜大普奔之举。想想看,在C/C++中,想要数组最后一个元素,得先取得数组长度,减一之后做索引,严重影响了思维的连贯性。Python语言之所以获得成功,我个人觉得,在诸多因素里面,列表操作的便捷性是不容忽视的一点。请看:

#Python学习群 592539176
>>> a = [0, 1, 2, 3, 4, 5]
>>> a[2:4]
[2, 3]
>>> a[3:]
[3, 4, 5]
>>> a[1:]
[1, 2, 3, 4, 5]
>>> a[:]
[0, 1, 2, 3, 4, 5]
>>> a[::2]
[0, 2, 4]
>>> a[1::2]
[1, 3, 5]
>>> a[-1]
5
>>> a[-2]
4
>>> a[1:-1]
[1, 2, 3, 4]
>>> a[::-1]
[5, 4, 3, 2, 1, 0]>>> a = [0, 1, 2, 3, 4, 5]
>>> a[2:4]
[2, 3]
>>> a[3:]
[3, 4, 5]
>>> a[1:]
[1, 2, 3, 4, 5]
>>> a[:]
[0, 1, 2, 3, 4, 5]
>>> a[::2]
[0, 2, 4]
>>> a[1::2]
[1, 3, 5]
>>> a[-1]
5
>>> a[-2]
4
>>> a[1:-1]
[1, 2, 3, 4]
>>> a[::-1]
[5, 4, 3, 2, 1, 0]

如果说,这些你都很熟悉,也经常用,那么接下来这个用法,你一定会感觉很神奇:

>>> a = [0, 1, 2, 3, 4, 5]
>>> b = ['a', 'b']
>>> a[2:2] = b
>>> a
[0, 1, 'a', 'b', 2, 3, 4, 5]
>>> a[3:6] = b
>>> a
[0, 1, 'a', 'a', 'b', 4, 5]

lambda函数

lambda 听起来很高大上,其实就是匿名函数(了解js的同学一定很熟悉匿名函数)。匿名函数的应用场景是什么呢?就是仅在定义匿名函数的地方使用这个函数,其他地方用不到,所以就不需要给它取个阿猫阿狗之类的名字了。下面是一个求和的匿名函数,输入参数有两个,x和y,函数体就是x+y,省略了return关键字。

>>> lambda x,y: x+y
<function <lambda> at 0x000001B2DE5BD598>
>>> (lambda x,y: x+y)(3,4) # 因为匿名函数没有名字,使用的时候要用括号把它包起来

匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。

>>> a = [{'name':'B', 'age':50}, {'name':'A', 'age':30}, {'name':'C', 'age':40}]
>>> sorted(a, key=lambda x:x['name']) # 按姓名排序
[{'name': 'A', 'age': 30}, {'name': 'B', 'age': 50}, {'name': 'C', 'age': 40}]
>>> sorted(a, key=lambda x:x['age']) # 按年龄排序
[{'name': 'A', 'age': 30}, {'name': 'C', 'age': 40}, {'name': 'B', 'age': 50}]

再举一个数组元素求平方的例子,这次用map函数:

>>> a = [1,2,3]
>>> for item in map(lambda x:x*x, a):
print(item, end=', ') 1, 4, 9,

yield 以及生成器和迭代器

yield 这词儿,真不好翻译,翻词典也没用。我干脆就读作“一爱得”,算是外来词汇吧。要理解 yield,得先了解 generator(生成器)。要了解generator,得先知道 iterator(迭代器)。哈哈哈,绕晕了吧?算了,我还是说白话吧。话说py2时代,range()返回的是list,但如果range(10000000)的话,会消耗大量内存资源,所以,py2又搞了一个xrange()来解决这个问题。py3则只保留了xrange(),但写作range()。xrange()返回的就是一个迭代器,它可以像list那样被遍历,但又不占用多少内存。generator(生成器)是一种特殊的迭代器,只能被遍历一次,遍历结束,就自动消失了。总之,不管是迭代器还是生成器,都是为了避免使用list,从而节省内存。那么,如何得到迭代器和生成器呢?pyrhon内置了迭代函数 iter,用于生成迭代器,用法如下:

>>> a = [1,2,3]
>>> a_iter = iter(a)
>>> a_iter
<list_iterator object at 0x000001B2DE434BA8>
>>> for i in a_iter:
print(i, end=', ') 1, 2, 3,

yield 则是用于构造生成器的。比如,我们要写一个函数,返回从0到某正整数的所有整数的平方,传统的代码写法是这样的:

>>> def get_square(n):
result = list()
for i in range(n):
result.append(pow(i,2))
return result >>> print(get_square(5))
[0, 1, 4, 9, 16]

但是如果计算1亿以内的所有整数的平方,这个函数的内存开销会非常大,这是 yield 就可以大显身手了:

>>> def get_square(n):
for i in range(n):
yield(pow(i,2)) >>> a = get_square(5)
>>> a
<generator object get_square at 0x000001B2DE5CACF0>
>>> for i in a:
print(i, end=', ') 0, 1, 4, 9, 16,

如果再次遍历,则不会有输出了。

装饰器

刚弄明白迭代器和生成器,这又来个装饰器,Python 咋这么多器呢?的确,Python 为我们提供了很多的武器,装饰器就是最有力的武器之一。装饰器很强大,我在这里尝试从需求的角度,用一个简单的例子,说明装饰器的使用方法和制造工艺。假如我们需要定义很多个函数,在每个函数运行的时候要显示这个函数的运行时长,解决方案有很多。比如,可以在调用每个函数之前读一下时间戳,每个函数运行结束后再读一下时间戳,求差即可;也可以在每个函数体内的开始和结束位置上读时间戳,最后求差。不过,这两个方法,都没有使用装饰器那么简单、优雅。下面的例子,很好地展示了这一点。

>>> import time
>>> def timer(func):
def wrapper(*args,**kwds):
t0 = time.time()
func(*args,**kwds)
t1 = time.time()
print('耗时%0.3f'%(t1-t0,))
return wrapper >>> @timer
def do_something(delay):
print('函数do_something开始')
time.sleep(delay)
print('函数do_something结束') >>> do_something(3)
函数do_something开始
函数do_something结束
耗时3.077

timer() 是我们定义的装饰器函数,使用@把它附加在任何一个函数(比如do_something)定义之前,就等于把新定义的函数,当成了装饰器函数的输入参数。运行 do_something() 函数,可以理解为执行了timer(do_something) 。细节虽然复杂,不过这么理解不会偏差太大,且更易于把握装饰器的制造和使用。

巧用断言assert

所谓断言,就是声明表达式的布尔值必须为真的判定,否则将触发 AssertionError 异常。严格来讲,assert是调试手段,不宜使用在生产环境中,但这不影响我们用断言来实现一些特定功能,比如,输入参数的格式、类型验证等。

#Python学习群 592539176
>>> def i_want_to_sleep(delay):
assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
print('开始睡觉')
time.sleep(delay)
print('睡醒了') >>> i_want_to_sleep(1.1)
开始睡觉
睡醒了
>>> i_want_to_sleep(2)
开始睡觉
睡醒了
>>> i_want_to_sleep('')
Traceback (most recent call last):
File "<pyshell#247>", line 1, in <module>
i_want_to_sleep('')
File "<pyshell#244>", line 2, in i_want_to_sleep
assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
AssertionError: 函数参数必须为整数或浮点数

让你的逼格瞬间提升的十个Python语法!的更多相关文章

  1. 学习 27 门编程语言的长处,提升你的 Python 代码水平

    Python猫注:Python 语言诞生 30 年了,如今的发展势头可谓如火如荼,这很大程度上得益于其易学易用的优秀设计,而不可否认的是,Python 从其它语言中偷师了不少.本文作者是一名资深的核心 ...

  2. PHP开发小技巧,让你瞬间提升逼格

    说到PHP代码的优化,PHP开发的小技巧我想很多人都有自己的一套,下面分享一些小技巧,希望对大家有所帮助. 1.循环内部不要声明变量,尤其是对象这样的变量. 2.foreach效率更高,尽量用fore ...

  3. 最值得一看的几条简单的谷歌 Google 搜索技巧,瞬间提升你的网络搜索能力

    可能你和我一样,几乎每天都必须与搜索引擎打交道,不过很多时候,你辛辛苦苦搜了半天也没找到合适的资料,然而“高手们”上来一眨眼功夫就能命中目标了.这并不是别人运气好,而是搜索引擎其实是有很多技巧可以帮助 ...

  4. Python语法糖,提升编程幸福感!!!

    转载请注明出处️ 作者:测试蔡坨坨 原文链接:caituotuo.top/a52bc938.html 大家好,我是测试蔡坨坨. 今天,我们来盘点一下Python中的那些语法糖. 什么是语法糖?语法糖不 ...

  5. 这十个Python常用库,学习Python的你必须要知道!

    想知道Python取得如此巨大成功的原因吗?只要看看Python提供的大量库就知道了 包括原生库和第三方库.不过,有这么多Python库,有些库得不到应有的关注也就不足为奇了.此外,只在一个领域里的工 ...

  6. 【大数据技术能力提升_1】python基础

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  7. 十个Python爬虫武器库示例,十个爬虫框架,十种实现爬虫的方法!

    一般比价小型的爬虫需求,我是直接使用requests库 + bs4就解决了,再麻烦点就使用selenium解决js的异步 加载问题.相对比较大型的需求才使用框架,主要是便于管理以及扩展等. 1.Scr ...

  8. 十个python图像处理工具

    介绍 如今的世界存在了大量的数据,图像数据是重要的组成部分.如果要利用这些图片,需要对图像进行处理,提高图片质量或提取图片内容信息. 图像处理的常见操作包括图像显示,基本操作如裁剪,翻转,旋转等,图像 ...

  9. 学Python的你必须要知道,这十个Python常用库

    想知道Python取得如此巨大成功的原因吗?只要看看Python提供的大量库就知道了 包括原生库和第三方库. 不过,有这么多Python库,有些库得不到应有的关注也就不足为奇了. 此外,只在一个领域里 ...

随机推荐

  1. Myeclipse的一些快捷键整理(转)

    1. [ALT+/]    此快捷键为用户编辑的好帮手,能为用户提供内容的辅助,不要为记不全方法和属性名称犯愁,当记不全类.方法和属性的名字时,多体验一下[ALT+/]快捷键带来的好处吧.    2. ...

  2. PHP 可选参数

    function chooseable($a,$b,$d,$c="我是可选参数c"){ //注意:可选参数一定要是在必选参数后面(有默认值就是可选参数):PHP中参数一定要变量符号 ...

  3. CentOS安装docker,及其基本操作

    CentOS安装docker,及其基本操作 一.安装docker Docker要求运行在Centos 7上,要求系统为64位,系统内核版本3.10以上 1.uname -an 查看当前系统版本 2.y ...

  4. 事务:Transaction详解

    1.事务概念: 一组sql语句操作单元,组内所有SQL语句完成一个业务,如果整组成功:意味着全部SQL都实现:如果其中任何一个失败,意味着整个操作都失败.失败,意味着整个过程都是没有意义的.应该是数据 ...

  5. 每天进步一点点------Allegro 动态显示走线长度

    手工布线时还可以动态显示当前走线的长度,设置方法为执行菜单命令Setup->User preferences,打开User preferences Editor对话框.在Etch对应的环境变量中 ...

  6. Linux gd库安装步骤说明

    gd 库是 PHP 处理图形的扩展库,它提供了一系列用来处理图片的 API(应用程序编程接口),使用 gd 库可以处理图片或者生成图片.在网站上,gd 库通常用来生成缩略图,或者对图片加水印,或者生成 ...

  7. mutiprocessing 同步类型,如锁,条件和队列官方案例:

    官方文档:https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing 1. 同步类型,如锁,条件和队列官 ...

  8. mysql修改密码的4种方式

    转:https://www.cnblogs.com/jdxn/p/6847089.html 方法1: 用SET PASSWORD命令 首先登录MySQL. 格式:mysql> set passw ...

  9. buuctf 二维码

    首先下载文件 然后用解压工具解压之后 发现是一个二维码 扫描二维码 并没有拿到 flag 然后将图片拖进 hxd中搜索PK发现有一个压缩包  将压缩包提取出来 暴力破解 然后得到密码 然后解压 然后得 ...

  10. Mongodb学习笔记(二)Capped Collection固定集合

    一.Capped Collection固定集合 简单介绍 capped collections是性能出色的有着固定大小的集合(定容集合),以LRU(Least Recently Used最近最少使用) ...