P3384 【模板】树链剖分

题目描述

如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:

操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z

操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和

操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z

操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和

输入输出格式

输入格式:

第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。

接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。

接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)

接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:

操作1: 1 x y z

操作2: 2 x y

操作3: 3 x z

操作4: 4 x

输出格式:

输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模)

输入输出样例

输入样例#1:

5 5 2 24
7 3 7 8 0
1 2
1 5
3 1
4 1
3 4 2
3 2 2
4 5
1 5 1 3
2 1 3
输出样例#1:

2
21

说明

时空限制:1s,128M

数据规模:

对于30%的数据: N \leq 10, M \leq 10N≤10,M≤10

对于70%的数据: N \leq {10}^3, M \leq {10}^3N≤10​3​​,M≤10​3​​

对于100%的数据: N \leq {10}^5, M \leq {10}^5N≤10​5​​,M≤10​5​​

( 其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233 )

样例说明:

树的结构如下:

各个操作如下:

故输出应依次为2、21(重要的事情说三遍:记得取模)

模板题就不多说啦,http://blog.sina.com.cn/s/blog_6974c8b20100zc61.html 有介绍,我就是看这个懂得

#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn = 100000 + 10;
int cnt = 0,map[maxn],val[maxn],num[maxn],size[maxn],father[maxn],son[maxn],top[maxn],dep[maxn],w[maxn];
int n,m,r,p;
vector<int> edges[maxn];
inline void dfs1(int now,int f) {
    size[now] = 1;
    father[now] = f;
    dep[now] = dep[father[now]]+1;
    for (size_t i = 0;i < edges[now].size();i++)
        if (edges[now][i] != f) {
            dfs1(edges[now][i],now);
            size[now] += size[edges[now][i]];
            if (size[son[now]] < size[edges[now][i]] || !son[now]) son[now] = edges[now][i];
        }
}
inline void dfs2(int now,int ntop) {
    top[now] = ntop;
    num[now] = ++cnt;
    map[num[now]] = now;
    if (son[now]) dfs2(son[now],ntop);
    for (size_t i = 0;i < edges[now].size();i++)
        if (edges[now][i] != father[now] && edges[now][i] != son[now]) dfs2(edges[now][i],edges[now][i]);
}
struct seg { long long sum,mark,l,r; } tree[maxn*4];
inline void BuildTree(int l,int r,int root) {
    if (l == r) {
        tree[root].l = l;
        tree[root].r = r;
        tree[root].sum = val[map[l]];
        tree[root].mark = 0;
        return;
    }
    int mid = l+r>>1;
    BuildTree(l,mid,root<<1);
    BuildTree(mid+1,r,(root<<1)+1);
    tree[root].l = l;
    tree[root].r = r;
    tree[root].mark = 0;
    tree[root].sum = tree[root<<1].sum+tree[(root<<1)+1].sum;
}
inline void pushdown(int root) {
    if (tree[root].mark) {
        tree[root<<1].mark += tree[root].mark;
        tree[root<<1|1].mark += tree[root].mark;
        tree[root<<1].sum += tree[root].mark*(tree[root<<1].r-tree[root<<1].l+1);
        tree[root<<1|1].sum += tree[root].mark*(tree[root<<1|1].r-tree[root<<1|1].l+1);
        tree[root].mark = 0;
    }
}
inline void Update(int l,int r,int ql,int qr,int root,long long x) {
    if (ql > r || qr < l) return;
    if (ql <= l && qr >= r) {
        tree[root].mark += x;
        tree[root].sum += x*(r-l+1);
        return;
    }
    pushdown(root);
    int mid = l+r>>1;
    Update(l,mid,ql,qr,root<<1,x);
    Update(mid+1,r,ql,qr,root<<1|1,x);
    tree[root].sum = tree[root<<1].sum+tree[root<<1|1].sum;
}
inline long long Query(int l,int r,int ql,int qr,int root) {
    if (ql > r || qr < l) return 0;
    if (ql <= l && qr >= r) return tree[root].sum;
    pushdown(root);
    int mid = l+r>>1;
    return Query(l,mid,ql,qr,root<<1)+Query(mid+1,r,ql,qr,root<<1|1);
}
inline void UpdateEdges(int u,int v,long long x) {
    int topu = top[u];
    int topv = top[v];
    while (topu != topv) {
        if (dep[topu] < dep[topv]) {
            swap(topu,topv);
            swap(u,v);
        }
        Update(1,cnt,num[topu],num[u],1,x);
        u = father[topu];
        topu = top[u];
    }
    if (dep[u] > dep[v]) swap(u,v);
    Update(1,cnt,num[u],num[v],1,x);
}
inline long long QueryEdges(int u,int v) {
    int topu = top[u];
    int topv = top[v];
    long long sum = 0;
    while (topu != topv) {
        if (dep[topu] < dep[topv]) {
            swap(topu,topv);
            swap(u,v);
        }
        sum += Query(1,cnt,num[topu],num[u],1);
        sum %= p;
        u = father[topu];
        topu = top[u];
    }
    if (dep[u] > dep[v]) swap(u,v);
    return (sum+Query(1,cnt,num[u],num[v],1))%p;
}
int main() {
    scanf("%d%d%d%d",&n,&m,&r,&p);
    for (int i = 1;i <= n;i++) scanf("%d",&val[i]);
    for (int i = 1,u,v;i < n;i++) {
        scanf("%d%d",&u,&v);
        edges[u].push_back(v);
        edges[v].push_back(u);
    }
    dfs1(r,0);
    dfs2(r,r);
    BuildTree(1,cnt,1);
    while (m--) {
        long long dispose,x,y;
        scanf("%lld%lld",&dispose,&x);
        if (dispose == 1) {
            long long z;
            scanf("%lld%lld",&y,&z);
            UpdateEdges(x,y,z);
        } else if (dispose == 2) {
            scanf("%lld",&y);
            printf("%lld\n",QueryEdges(x,y));
        } else if (dispose == 3) {
            scanf("%lld",&y);
            Update(1,cnt,num[x],num[x]+size[x]-1,1,y);
        } else printf("%lld\n",Query(1,cnt,num[x],num[x]+size[x]-1,1)%p);
    }
    return 0;
}

  

luogu3384 【模板】树链剖分的更多相关文章

  1. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

  2. luoguP3384 [模板]树链剖分

    luogu P3384 [模板]树链剖分 题目 #include<iostream> #include<cstdlib> #include<cstdio> #inc ...

  3. [洛谷P3384] [模板] 树链剖分

    题目传送门 显然是一道模板题. 然而索引出现了错误,狂wa不止. 感谢神犇Dr_J指正.%%%orz. 建线段树的时候,第44行. 把sum[p]=bv[pos[l]]%mod;打成了sum[p]=b ...

  4. 模板 树链剖分BFS版本

    //点和线段树都从1开始 //边使用vector vector<int> G[maxn]; ],num[maxn],iii[maxn],b[maxn],a[maxn],top[maxn], ...

  5. P3384 [模板] 树链剖分

    #include <bits/stdc++.h> using namespace std; typedef long long ll; int n, m, rt, mod, cnt, to ...

  6. 树链剖分详解(洛谷模板 P3384)

    洛谷·[模板]树链剖分 写在前面 首先,在学树链剖分之前最好先把 LCA.树形DP.DFS序 这三个知识点学了 emm还有必备的 链式前向星.线段树 也要先学了. 如果这三个知识点没掌握好的话,树链剖 ...

  7. 『题解』洛谷P3384 【模板】树链剖分

    Problem Portal Portal1: Luogu Description 如题,已知一棵包含\(N\)个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作\(1\): ...

  8. luogu3384 /// 树链剖分+线段树模板

    题目大意: https://www.luogu.org/problemnew/show/P3384 树链剖分的讲解 两个dfs() 修改 查询 很详细很好理解 https://www.cnblogs. ...

  9. P3384 【模板】树链剖分

    P3384 [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节 ...

随机推荐

  1. 利用HTML5判断用户是否正在浏览页面技巧

    现在,HTML5里页面可见性接口就提供给了程序员一个方法,让他们使用visibilitychange页面事件来判断当前页面可见性的状态,并针对性的执行某些任务.同时还有新的document.hidde ...

  2. Async(异步)(一)

    在谈到异步的概念时,先要了解几个概念了. 什么是进程? 当一个程序开始运行时,它就是一个进程,进程包括运行中的程序和程序所使用到的内存和系统资源. 而一个进程又是由多个线程所组成的 什么是线程? 线程 ...

  3. 关于Verilog HDL的一些技巧、易错、易忘点(不定期更新)

    本文记录一些关于Verilog HDL的一些技巧.易错.易忘点等(主要是语法上),一方面是方便自己忘记语法时进行查阅翻看,另一方面是分享给大家,如果有错的话,希望大家能够评论指出. 关键词: ·技巧篇 ...

  4. SparkMLlib-----GMM算法

    Gaussian Mixture Model(GMM)是一个很流行的聚类算法.它与K-Means的很像,但是K-Means的计算结果是算出每个数据点所属的簇,而GMM是计算出这些数据点分配到各个类别的 ...

  5. 支持多个版本的ASP.NET Core Web API

    基本配置及说明 版本控制有助于及时推出功能,而不会破坏现有系统. 它还可以帮助为选定的客户提供额外的功能. API版本可以通过不同的方式完成,例如在URL中添加版本或通过自定义标头和通过Accept- ...

  6. Java 接口-抽象类解析

    对于面向对象编程,抽象是它的三大特征(抽象.继承.多态)之一.在Java中,可以通过两种形式来体现OOP的抽象:接口和抽象类. 这两者既相似又存异.诸位在初学的时候也会傻傻分不清接口与抽象类的区别,大 ...

  7. Spring-Framework 源码阅读之AnnotationBeanUtils

    Java程序员,就是要学会一个名字叫做"春"的东西,这玩意运用的非常的广泛,现在如果你的业务系统或者软件没有在这个东西上开发,都不要意思拿出来.因为你更不上时代了.在平时的工作的中 ...

  8. pwnable input2 之 write up

    首先看源代码: input2@ubuntu:~$ cat input.c #include <stdio.h> #include <stdlib.h> #include < ...

  9. Zend Framework1 框架入门(针对Windows,包含安装配置与数据库增删改查)

    最近公司接的项目需要用到Zend Framework框架,本来需要用的是ZendFramework2 ,但是由于原有代码使用了ZendFramework1 框架,所以顺带学习了.现将一些基础入门记录一 ...

  10. Go语言学习笔记(六)net

    加 Golang学习 QQ群共同学习进步成家立业工作 ^-^ 群号:96933959 net import "net" net包提供了可移植的网络I/O接口,包括TCP/IP.UD ...