(没太听明白,以后再听)

1. 如何欺骗神经网络?

  这部分研究最开始是想探究神经网络到底是如何工作的。结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案。比如下图,左边的熊猫被识别成熊猫,但是加上中间的小“噪音”一样的数值,右图的熊猫就识别不出来了。而且这个小“噪音”不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络。

2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化、训练。但是从输入到输出的映射可以看成线性的,是可以预测的,优化出输入要比优化出权重容易得多。可以利用输入到输出的线性关系,很方便地生成可以欺骗(或者叫攻击)神经网络的样例。

  FGSM (Fast Gradient Step Method):一种对抗方法。这个方法的核心思想是在每一步优化的过程中加入少量噪声,让预测结果朝目标类别偏移,或者如你所愿远离正确的类别。

  Transferability Attack:在自己的网络上找到攻击样例,这个样例往往也能攻破其他神经网络。

3. 对抗样例可以用来训练网络得到更好的效果。

4. 总结

cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记的更多相关文章

  1. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  2. Generating Adversarial Examples with Adversarial Networks

    目录 概 主要内容 black-box 拓展 Xiao C, Li B, Zhu J, et al. Generating Adversarial Examples with Adversarial ...

  3. cs231n spring 2017 lecture9 CNN Architectures 听课笔记

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  4. cs231n spring 2017 lecture9 CNN Architectures

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  5. cs231n spring 2017 lecture13 Generative Models 听课笔记

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  6. cs231n spring 2017 lecture13 Generative Models

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  7. cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记

    1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...

  8. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  9. cs231n spring 2017 Python/Numpy基础 (1)

    本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...

随机推荐

  1. 《Java NIO (中文版)》【PDF】下载

    <Java NIO (中文版)>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230062530 NIO (中文版)>[PDF]& ...

  2. 3D位置语音,引领吃鸡游戏体验升级

    欢迎大家前往云加社区,获取更多腾讯海量技术实践干货哦~ 作者:腾讯游戏云 导语:在刚刚结束的首届腾讯用户开放日上,腾讯音视频实验室带着3D位置音效解决方案,向所有用户亮相,为用户提供360度立体空间的 ...

  3. 【java】用HashMap计数,用TreeSet排序

    package com.tn.hashMap; import java.util.HashMap; import java.util.TreeSet; public class HashMapDemo ...

  4. TCP/IP的那些事--子网掩码

    当前互联网使用的主要是IPv4协议,它是第一个被广泛使用,构成现今互联网的基础的协议.但是,随着用户数量的增多,IPv4包含的IP资源在不断减少.或许你会想,不是还有IPv6吗?IPv6的容量足以应付 ...

  5. VM环境下Linux虚拟机扩展存储空间操作方法总结

    用VMwareware虚拟机安装的 Linux 系统剩余空间不足,造成软件无法正常安装.如果重新装一遍系统就需要重新配置好开发环境和软件的安装配置. 一.空间扩展  (1)打开VMware,选择Edi ...

  6. 深度搜索DFS-Lake Counting(POJ NO.2386)

    题目链接POJ NO.2386 解题思路: 这个也是一个dfs 的应用,在书上的例子,因为书上的代码并不全,基本都是函数分块来写,通过这个题目也规范了代码,以后能用函数的就都用函数来实现吧.采用深度优 ...

  7. 一张图讲清楚TCP流量控制

  8. Visual simultaneous localization and mapping: a survey 论文解析(全)

    当激光或声纳等距离传感器被用来构建小的静态环境的二维地图时,SLAM的问题被认为是解决的.然而,对于动态,复杂和大规模的环境,使用视觉作为唯一的外部传感器,SLAM是一个活跃的研究领域. 第一部分是简 ...

  9. css盒模型研究

    css的盒模型一直是一个重点和难点,最近由后端的学习转到前端,觉得有必要深入研究一下css的盒模型. 1.万物皆盒子 我们必须要有一个理念,在html的世界里,万物皆盒子,那就是任何一个html元素都 ...

  10. nginx php上传配置

    .file_uploads 设为On,允许通过HTTP上传文件 2.upload_tmp_dir 文件上传至服务器时用于临时存储的目录,如果没指定,系统会使用默认的临时文件夹(我的机器是/tmp). ...