关于android消息机制 已经写了3篇文章了,想要结束这个系列,总觉得少了点什么?

于是我就在想,android为什么要这个设计消息机制,使用消息机制是现在操作系统基本都会有的特点。

可是android是把消息自己提供给开发者使用!我们可以很简单的就在一个线程中创建一个消息系统,不需要考虑同步,消息队列的存放,绑定。

自己搞一个消息系统麻烦吗?android到底为什么要这么设计呢?

那我们自己先搞一个消息机制看看,到底是个什么情况?

首先消息肯定需要消息队列:

package com.joyfulmath.androidstudy.thread.messagemachine;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue; import com.joyfulmath.androidstudy.TraceLog; import android.util.AndroidRuntimeException; /*message queue
*
* */
public class MessageQueue {
BlockingQueue<Message> mQueue = null;
private boolean mQuit = false;
public MessageQueue()
{
mQueue = new LinkedBlockingQueue<Message>();
mQueue.clear();
} public boolean enqueueMessage(Message msg, long when)
{
TraceLog.i();
if (msg.target == null) {
throw new AndroidRuntimeException("Message must have a target.");
} try {
mQueue.put(msg);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
TraceLog.i("done");
return true;
} public Message next()
{
TraceLog.i();
Message msg = null;
if(mQuit)
{
return null;
} //wait mQueue msg util we can get one.
try {
msg = mQueue.take();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
TraceLog.i(msg.toString());
return msg;
} public synchronized void quit()
{
mQuit = true;
}
}

这里有个问题,就是消息添加和获取的同步问题,尤其是一开始,消息队列没有消息的时候,获取消息会怎样?

我们稍后来看这个问题,先看消息队列的几个函数:

BlockingQueue<Message> mQueue = null;

这个就是实际队列存放的地方,就是一个普通的queue。

然后就是加入消息和取出消息。

其实这2个操作,一般都不在一个线程内,需要考虑同步问题。

最后是退出函数,注意,quit()是消息机制结束的标志,一但设置,整个线程将结束。

我们在来讲讲:

mQueue.put(msg);
msg = mQueue.take();

put就是把消息放入队列,而take则与一般的queue peek方法不同,如果消息队列为空,这个地方会block住,直到有消息

加入队列为止。其实这里有个问题,如何一直没有消息进入队列的话,线程会一直block住。

下面我们看看消息队列的生存位置---线程。

package com.joyfulmath.androidstudy.thread.messagemachine;

import com.joyfulmath.androidstudy.TraceLog;

public class MessageHandlerThread extends Thread {
private Object objsync = new Object(); private boolean mQuite = false;
private Message msg = null;
ThreadLocal<MessageQueue> mThreadLocakMsgQueue = new ThreadLocal<MessageQueue>();
@Override
public void run() {
TraceLog.d("MessageHandlerThread start running");
prepare();
final MessageQueue mQueue = getMessageQueue();
while(true)
{
synchronized (objsync) {
if(mQuite)
{
TraceLog.i("quite msg queue");
break;
}
}
Message msg = mQueue.next();
TraceLog.i("get next msg:"+msg);
if(msg == null)
{
// No message indicates that the message queue is quitting.
return;
}
msg.target.dispatchHandlerMessage(msg);
} TraceLog.i("thread is done");
} private void prepare()
{
if(mThreadLocakMsgQueue.get()!=null)
{
throw new RuntimeException("message queue should only be one for pre thread");
}
mThreadLocakMsgQueue.set(new MessageQueue());
onPrepared();
} public MessageQueue getMessageQueue()
{
return mThreadLocakMsgQueue.get();
} public void quit()
{
synchronized (objsync) {
mQuite = true;
getMessageQueue().quit();
}
} protected void onPrepared()
{ }
}

MessageHandlerThread

如上,我们定义了一个MessageHandlerThread。

关键的run方法:

    public void run() {
TraceLog.d("MessageHandlerThread start running");
prepare();
final MessageQueue mQueue = getMessageQueue();
while(true)
{
synchronized (objsync) {
if(mQuite)
{
TraceLog.i("quite msg queue");
break;
}
}
Message msg = mQueue.next();
TraceLog.i("get next msg:"+msg);
if(msg == null)
{
// No message indicates that the message queue is quitting.
return;
}
msg.target.dispatchHandlerMessage(msg);
} TraceLog.i("thread is done");
}

while(true) ,是的,消息机制一直在运行着,知道quit的时候。

首先是preopare();里面有个变量

ThreadLocal<MessageQueue> mThreadLocakMsgQueue = new ThreadLocal<MessageQueue>();

这是一个特殊的变量,也就是说每个线程拥有一方实例,且,各个线程之间的变量是不可见的。

这样我们保证了,每个messagequeue与thread对应。

接下来我们看看MsgHandler,也就是“操作者”

package com.joyfulmath.androidstudy.thread.messagemachine;

import com.joyfulmath.androidstudy.TraceLog;

public abstract class MsgHandler {
/*
* message queue is only one in thread
* */
final MessageQueue mQueue; public MsgHandler(MessageQueue mQueue)
{
this.mQueue = mQueue;
} public void dispatchHandlerMessage(Message msg)
{
TraceLog.i();
onHandleMessage(msg);
} public void sendMessage(Message msg)
{
enqueueMessage(msg,0L);
} private boolean enqueueMessage(Message msg, long when)
{
msg.target = this;
return mQueue.enqueueMessage(msg, 0);
} protected abstract void onHandleMessage(Message msg);
}

其实handler主要任务是2个,把消息加入队列,异步执行消息操作。

protected abstract void onHandleMessage(Message msg);

这个虚函数就是说,每个handler都需要自己去 “handler”自己发送的消息。

public class Message {
public MsgHandler target;
public int what;
@Override
public String toString() {
return "message:"+what;
} }

最后是message类,只有很简单的2个变量,第一个是在dispatchmessage的时候,知道派送给那个handler来处理。

第二个是消息区分的标志,当然也可以添加其他的一些变量。

以上就是一个简单的消息机制的代码。所以我们总结下消息机制大概需要这么几个角色。

1.消息

2.消息队列

3.thread,也就是消息机制运行的载体

4.handler,也就是“操作者”。

其实根据《android 进程/线程管理(一)----消息机制的框架》,

android消息机制也与上面类似,当然在细节上,android代码的思想的光辉可以看出来。

所以下面将着重分析android消息系统各个精彩的细节,关于系统框架的介绍,可以看本系列的其他文章。

一下源码分析,是基于andorid4.4的,其他版本的源码可能会有不同,请注意。

我们首先来看MessageQueue,andorid的MQ不是一个队列,居然是一个链表!

使用链表的原因应该是,我们不知道queue的长度大小,理论上是足够大,只要内存允许的话。

还有一个重要原因是:

void removeMessages(Handler h, int what, Object object)
void removeMessages(Handler h, Runnable r, Object object)

它可以快速的删除我们不需要的message。

我们来看messagequeue入列和出列操作:

boolean enqueueMessage(Message msg, long when) {
if (msg.isInUse()) {
throw new AndroidRuntimeException(msg + " This message is already in use.");
}
if (msg.target == null) {
throw new AndroidRuntimeException("Message must have a target.");
} synchronized (this) {
if (mQuitting) {
RuntimeException e = new RuntimeException(
msg.target + " sending message to a Handler on a dead thread");
Log.w("MessageQueue", e.getMessage(), e);
return false;
} msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
} // We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
Message next() {
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
} // We can assume mPtr != 0 because the loop is obviously still running.
// The looper will not call this method after the loop quits.
nativePollOnce(mPtr, nextPollTimeoutMillis); synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (false) Log.v("MessageQueue", "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
} // Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
} // If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
} if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
} // Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf("MessageQueue", "IdleHandler threw exception", t);
} if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
} // Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}

入列操作:首先是对一些情况的判断,是否设置了handler,是否已经开始退出消息机制等。

然后是把queue加入队列。这些基本可以理解为是同步的,也就是不会block,应为这个操作有极大的可能运行在主线程。

而next恰恰是messagequeue设计的精髓。

nativePollOnce(mPtr, nextPollTimeoutMillis);

线程将CPU交给其他线程运行,自己进入一个等待状态。出发时机就是,timeout或者等待的事件发生了。

所以这个函数是next方法实现等到新消息到来的关键。应此我们可以回答在第一篇里我们提出的那个问题?

            Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}

一开始队列是空的,但是next方法会block住,不会返回null,只有当设置了quit flag以后,才会返回null。

我们看到的enqueueMessage里面的nativeWake就是叫醒这个地方的。

接下去就是取得消息,或者消息时间还没有到,就在此进入等待状态。

当然如果有idehandler需要执行的话,可以执行。

本文实现了一个自定义的消息机制,以及分析了android messagequeue的源码。

关于handler,looper的进一步分析将在下一篇中介绍。

android 进程/线程管理(四)----消息机制的思考(自定义消息机制)的更多相关文章

  1. android 进程/线程管理(四)续----消息机制的思考(自定义消息机制)

    继续分析handler 和looper 先看看handler的 public void dispatchMessage(Message msg) { if (msg.callback != null) ...

  2. android 进程/线程管理(一)----消息机制的框架

    一:android 进程和线程 进程是程序运行的一个实例.android通过4大主件,弱化了进程的概念,尤其是在app层面,基本不需要关系进程间的通信等问题. 但是程序的本质没有变,尤其是多任务系统, ...

  3. android 进程/线程管理(二)----关于线程的迷思

    一:进程和线程的由来 进程是计算机科技发展的过程的产物. 最早计算机发明出来,是为了解决数学计算而发明的.每解决一个问题,就要打纸带,也就是打点. 后来人们发现可以批量的设置命令,由计算机读取这些命令 ...

  4. android 进程/线程管理(三)----Thread,Looper / HandlerThread / IntentService

    Thread,Looper的组合是非常常见的组合方式. Looper可以是和线程绑定的,或者是main looper的一个引用. 下面看看具体app层的使用. 首先定义thread: package ...

  5. android 进程间通信 messenger 是什么 binder 跟 aidl 区别 intent 进程间 通讯? android 消息机制 进程间 android 进程间 可以用 handler么 messenger 与 handler 机制 messenger 机制 是不是 就是 handler 机制 或 , 是不是就是 消息机制 android messenge

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha messenger 是什么 binder 跟 aidl 区别 intent 进程间 通讯 ...

  6. android学习-进程/线程管理-完整

    我们知道,应用程序的主入口都是main函数--"它是一切事物的起源" main函数工作也是千篇一律的, 初始化 比如ui的初始化,向系统申请资源等. 进入死循环 再循环中处理各种事 ...

  7. python进阶------进程线程(四)

    Python中的协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其 ...

  8. ucore操作系统学习(四) ucore lab4内核线程管理

    1. ucore lab4介绍 什么是进程? 现代操作系统为了满足人们对于多道编程的需求,希望在计算机系统上能并发的同时运行多个程序,且彼此间互相不干扰.当一个程序受制于等待I/O完成等事件时,可以让 ...

  9. 【朝花夕拾】Android性能篇之(六)Android进程管理机制

    前言        Android系统与其他操作系统有个很不一样的地方,就是其他操作系统尽可能移除不再活动的进程,从而尽可能保证多的内存空间,而Android系统却是反其道而行之,尽可能保留进程.An ...

随机推荐

  1. Sprint第三个冲刺(第五天)

    一.Sprint介绍 实验截图: 任务进度: 二.Sprint周期 看板: 燃尽图:

  2. C#开源资源项目

    一.AOP框架 Encase 是C#编写开发的为.NET平台提供的AOP框架.Encase 独特的提供了把方面(aspects)部署到运行时代码,而其它AOP框架依赖配置文件的方式.这种部署方面(as ...

  3. 以对象的方式来访问xml数据表(三)

    怎样以对象的方式来访问xml数据表? 在讲如何具体实现(二)中所说的专门用于访问xml文件的动态链接库之前,我们先来看看这个动态链接库具体要实现什么功能. 动态链接库IXmlDB.dll的功能: 1. ...

  4. 菜鸟成长进阶之——fiddler使用总结

     作为一个猪拱性能的程序猿,不会使用fiddler来协助自己分析问题是万万不能的.还记得刚入职的时候老大提过的几个必须要熟练使用的工具中第一个就是fiddler.虽然接触了快一年了,但是还是一知半解的 ...

  5. lavarel框架中如何使用ajax提交表单

    开门见山,因为laravel以post形式提交数据时候需要加{{csrf_field()}}防止跨站攻击,所以当你用ajax提交表单时候自然也要加 在网上看了很多的解决方式,我是用下面这种方法解决的: ...

  6. gcd和拓展gcd算法

    gcd算法是用来求两个数最大公约数的算法,他是依靠辗转相除(中国好像叫辗转相减)法来求两个数的最大公约数,别的地方也有很多介绍不做过多赘述,主要提供代码供自己参考. gcd(int a,int b) ...

  7. 打印机问题win7 和xp

    服务器端问题,重启如下服务 net stop "print spooler" net start "print spooler" gpedit.msc 本地计算 ...

  8. 安全协议:SSL、TSL、SSH概述

    SSL(Secure Socket Layer--安全套接字层):为网络通信安全以及数据完整性提供保障的一种安全协议,在TCP/IP的传输层对网络连接进行加密: TSL(Transport Layer ...

  9. ORACLE 中ROWNUM用法总结!

    ORACLE 中ROWNUM用法总结! 对于 Oracle 的 rownum 问题,很多资料都说不支持>,>=,=,between...and,只能用以上符号(<.<=.!=) ...

  10. DOM性能小记

    在使用DOM操作时,同样的效果用不同的方式来实现,性能方面也会有很大的差异.尤其在移动式设备上,资源本来就很有限,一旦DOM写不好的话操作就会非常卡顿.这个周末,就写个DOM性能小记吧.错漏之处,望多 ...