Link:

BZOJ 2425 传送门

Solution:

其实就是利用数位$dp$的思想来暴力计数的一道题目

如果答案有$dgt$位,可以类似 [BZOJ 1833] 先计算出1至$dgt-1$位的情况再根据上界逐位枚举

不过实际上可以通过添补前导0的方式将所有情况都补为$dgt$位统一计算

其中组合数部分的计算可以使用阶乘的方式:$\frac{(\sum_{i=0}^9 cnt_i)!}{cnt_0!+cnt_1!...+cnt_9!}$

但为了防止阶乘爆$long long$,要通过拆分后统计每一个质因数个数的方式来求解

更简便的方式是直接使用组合数:$\sum_{i=0}^9 C[tot-sum(i-1)][cnt_i]$

Code:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
ll res=;
char s[];
int C[][],cnt[],len;
int idx(char ch){return ch-'';}
int main()
{
C[][]=;
for(int i=;i<=;i++)
{
C[i][]=;
for(int j=;j<=;j++)
C[i][j]=C[i-][j-]+C[i-][j];
} scanf("%s",s+);len=strlen(s+);
for(int i=;i<=len;i++) cnt[idx(s[i])]++;
for(int i=;i<=len;i++)
{
for(int j=;j<idx(s[i]);j++)
if(cnt[j])
{
int t=len-i;ll pro=;
cnt[j]--;
for(int k=;k<=;k++)
pro*=C[t][cnt[k]],t-=cnt[k];
res+=pro;cnt[j]++;
}
cnt[idx(s[i])]--;
}
printf("%lld",res);
return ;
}

Review:

1、两阶乘相除位数不够时可以通过逐个质因数统计次幂的方式来解决

ll cal(ll x,ll t){
ll res=;
while (x/t) res+=(x/=t);
return res;
}
ll solve()
{
ll res=;
for (int i=;i<=tot && pri[i]<=mx;i++)
{
ll pw=cal(mx,pri[i]);
for (int j=;j<;j++) pw-=cal(cnt[j],pri[i]);
res=res*qpow(pri[i],pw);
}
return res;
}

2、通过添加前导零将所有答案化成同一位数,方便统计

[BZOJ 2425] 计数的更多相关文章

  1. bzoj 2425 [HAOI2010]计数 dp+组合计数

    [HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discus ...

  2. BZOJ 2425 [HAOI2010]计数:数位dp + 组合数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意: 给你一个数字n,长度不超过50. 你可以将这个数字: (1)去掉若干个0 ( ...

  3. Week Two

    2018.12.3: 1.[BZOJ 4819] 2.[BZOJ 4827] 3.[P1919] 4.[FFT模板] 2018.12.4: 1.[NTT] 2.[MTT(CRT)] 3.[MTT(my ...

  4. 【BZOJ】【1211】【HNOI2004】树的计数

    Prufer序列+组合数学 嗯哼~给定每个点的度数!求树的种数!那么很自然的就想到是用prufer序列啦~(不知道prufer序列的……自己再找找资料吧,这里就不放了,可以去做一下BZOJ1005明明 ...

  5. 【BZOJ】【1016】【JSOI2008】最小生成树计数

    Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...

  6. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  7. BZOJ.4402.Claris的剑(组合 计数)

    BZOJ 因为是本质不同,所以考虑以最小字典序计数. 假设序列最大值为\(m\),那么序列有这两种情况: \(1\ (1\ 2\ 1\ 2...)\ 2\ (3\ 2\ 3\ 2...)\ 3\ (4 ...

  8. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  9. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

随机推荐

  1. 【TMD模拟赛】黄金拼图 Cao

    正解:Cao 据说这样的题是用来骗丛林生物上树的...... 这样的题除了考观察力之外还.........我们发现他异或了opt,恩,就这样,用离线推答案..... #include <cstd ...

  2. 关于Maven项目install时出现No compiler is provided in this environment的处理

    关于Maven项目build时出现No compiler is provided in this environment的处理 新配置的Eclipse环境,运行现有项目没问题,一日,从svn上检出了一 ...

  3. MySQL使用笔记(三)表的操作

    By francis_hao    Dec 11,2016 表的操作 表的操作有创建表.查看表.删除表和修改表 创建表 创建表之前要在某个数据库中. mysql> create table ta ...

  4. 构建一个类jq的函数库

    jqfree core var $ = function(selector, context) { return new $.fn.init(selector, context); }; $.fn = ...

  5. Windows Time Client

    Timezone: UTC Coordinated Universal Time ====Perform by Local / administrator must,configure Time se ...

  6. js介绍自己的例子

    js并不是真正面向对象的语言,但是我们通过一些方法也是可以实现js的一些面向对象设计的.常见的构造函数有很多模式有构造函数模式,原型链,工厂模式等等.但就是因为,我初学者看起来非常吃力,理解起来都是很 ...

  7. Java并发(4)- synchronized与CAS

    引言 上一篇文章中我们说过,volatile通过lock指令保证了可见性.有序性以及"部分"原子性.但在大部分并发问题中,都需要保证操作的原子性,volatile并不具有该功能,这 ...

  8. 搭建eova开发环境

    1.安装好maven 2.下载Eova项目解压到文件夹eova下 3.dos命令到eova文件夹下执行mvn eclipse:eclipse(注:构建eclipse项目命令) 4.修改*.tag文件错 ...

  9. JVM内存模型 二

    在并发编程中,多个线程之间采取什么机制进行通信(信息交换),什么机制进行数据的同步? 在Java语言中,采用的是共享内存模型来实现多线程之间的信息交换和数据同步的. 线程之间通过共享程序公共的状态,通 ...

  10. thinkphp 导入微信小程序加密解密库

    第三方类库 第三方类库指除了 ThinkPHP 框架.应用项目类库之外的其他类库,一般由第三方系统或产品提供,如 Smarty.Zend 等系统的类库等. 前面使用自动加载或 import 方法导入的 ...