Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

Contents
1 Preliminary
2 Algorithm
3 Complexity
4 Advantages
5 Disadvantages
6 Parameter estimation
7 Extensions
8 Availability
9 See also
10 Notes
11 References
11.1 Further readin

Preliminary

Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.
A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
All points not reachable from any other point are outliers.
Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

wiki: https://en.wikipedia.org/wiki/DBSCAN

DBSCAN(Density-based spatial clustering of applications with noise)的更多相关文章

  1. [Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise

    http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN ...

  2. Direction of Arrival Based Spatial Covariance Model for Blind Sound Source Separation

    基于信号协方差模型DOA的盲声源分离[1]. 在此基础上,作者团队于2018年又发布了一篇文章,采用分级和时间差的空间协方差模型及非负矩阵分解的多通道盲声源分离[2]. 摘要 本文通过对短时傅立叶变换 ...

  3. 数据挖掘--DBSCAN

    DBSCAN:Density Based Spatial Clustering of Applications with Noise Basic idea: If an object p is den ...

  4. 顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书

          顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: ht ...

  5. 顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

        顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http: ...

  6. 【转】常用聚类算法(一) DBSCAN算法

    原文链接:http://www.cnblogs.com/chaosimple/p/3164775.html#undefined 1.DBSCAN简介 DBSCAN(Density-Based Spat ...

  7. 常用聚类算法(一) DBSCAN算法

    1.DBSCAN简介 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度 ...

  8. 挑子学习笔记:DBSCAN算法的python实现

    转载请标明出处:https://www.cnblogs.com/tiaozistudy/p/dbscan_algorithm.html DBSCAN(Density-Based Spatial Clu ...

  9. 【原创】大叔算法分享(5)聚类算法DBSCAN

    一 简介 DBSCAN:Density-based spatial clustering of applications with noise is a data clustering algorit ...

随机推荐

  1. 使用bootstrap时遇到的问题及解决办法

    1.用到 Glyphicons图标组件时,要注意文件的存放位置,最好在站点下将下好的bootstrap文件夹复制过来,里面的fonts文件夹不要动,使用的时候直接引用bootstrap.css和boo ...

  2. locate: can not stat () `/var/lib/mlocate/mlocate.db': No such file or directory

    安装好CentOS后,第一次进入系统使用locate命令,结果出现:locate: can not stat () `/var/lib/mlocate/mlocate.db': No such fil ...

  3. (ZZ)WPF经典编程模式-MVVM示例讲解

    http://www.cnblogs.com/xjxz/archive/2012/11/14/WPF.html 本篇从两个方面来讨论MVVM模式: MVVM理论知识 MVVM示例讲解 一,MVVM理论 ...

  4. java字符串数组进行大小排序

    若是将两个字符串直接比较大小,会包:The operator > is undefined for the argument type(s) java.lang.String, java.lan ...

  5. VC++深入详解读书笔记-第七章对话框

    1.在MFC中,所有的控件类都是由CWnd类派生来的,因此,控件实际上也是窗口. 2. 3.对话框的种类 模态对话框 模态对话框是指当其显示时,程序会暂时执行,直到关闭这个模态对话框后,才能继续执行程 ...

  6. sqlite在c++中的使用方法

    1.需要下载的文件      http://pan.baidu.com/s/1c06NpzM 2.执行文件shell的编译 3.在c++中如何使用 #include <stdio.h> # ...

  7. JAVA异常使用_每个人都曾用过、但未必都用得好

    一.抛出异常 vs. 返回错误代码 有人说“Well, an exception is a goto.”,但也有人言“makes the code simpler by visibly separat ...

  8. 纯css改变下拉列表select框的默认样式

    下列CSS就可以解决,原理是将浏览器默认的下拉框样式清除,然后应用上自己的,再附一张向右对齐小箭头的图片即可. select { /*Chrome和Firefox里面的边框是不一样的,所以复写了一下* ...

  9. C# Winform程序本地化应用

    1. 创建一个WinForm应用程序 – “WindowsFormsLocalizationTest”. 2. 在主窗体属性栏里,把Localizable属性设置成”True”. 3. 添加两个But ...

  10. Ubuntu系统下创建python数据挖掘虚拟环境

    虚拟环境:   虚拟环境是用于创建独立的python环境,允许我们使用不同的python模块和版本,而不混淆.   让我们了解一下产品研发过程中虚拟环境的必要性,在python项目中,显然经常要使用不 ...