CSAIndividual.py

 import numpy as np
import ObjFunction class CSAIndividual: '''
individual of clone selection algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for clone selection algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

CSA.py

 import numpy as np
from CSAIndividual import CSAIndividual
import random
import copy
import matplotlib.pyplot as plt class CloneSelectionAlgorithm: '''
the class for clone selection algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[beta, pm, alpha_max, alpha_min]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = CSAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the clone selection algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
tmpPop = self.reproduction()
tmpPop = self.mutation(tmpPop)
self.selection(tmpPop)
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def reproduction(self):
'''
reproduction
'''
tmpPop = []
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(0, nc):
ind = copy.deepcopy(self.population[i])
tmpPop.append(ind)
return tmpPop def mutation(self, tmpPop):
'''
hypermutation
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(1, nc):
rnd = np.random.random(1)
if rnd < self.params[0]:
# alpha = self.params[
# 2] + self.t * (self.params[3] - self.params[2]) / self.MAXGEN
delta = self.params[2] + self.t * \
(self.params[3] - self.params[3]) / self.MAXGEN
tmpPop[i * nc + j].chrom += np.random.normal(0.0, delta, self.vardim)
# tmpPop[i * nc + j].chrom += alpha * np.random.random(
# self.vardim) * (self.best.chrom - tmpPop[i * nc +
# j].chrom)
for k in xrange(0, self.vardim):
if tmpPop[i * nc + j].chrom[k] < self.bound[0, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[0, k]
if tmpPop[i * nc + j].chrom[k] > self.bound[1, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[1, k]
tmpPop[i * nc + j].calculateFitness()
return tmpPop def selection(self, tmpPop):
'''
re-selection
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
best = 0.0
bestIndex = -1
for j in xrange(0, nc):
if tmpPop[i * nc + j].fitness > best:
best = tmpPop[i * nc + j].fitness
bestIndex = i * nc + j
if self.fitness[i] < best:
self.population[i] = copy.deepcopy(tmpPop[bestIndex])
self.fitness[i] = best def printResult(self):
'''
plot the result of clone selection algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Clone selection algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
csa = CSA(50, 25, bound, 500, [0.3, 0.4, 5, 0.1])
csa.solve()

ObjFunction见简单遗传算法-python实现

克隆选择算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 第2章 面向对象的设计原则(SOLID):1_单一职责原则(SRP)

    1. 单一职责原则(Single Responsibility Principle,SRP) 1.1 单一职责的定义 (1)定义:一个类应该仅有一个引起它变化的原因.这里变化的原因就是所说的“职责”. ...

  2. 利用Clip制作打洞效果

    起因 如上篇博文所说,连线原型需要在中间文字上下各留15像素的空白.设计师完成原型之后,问我有没有办法实现,我说,我能想到两种实现方式.其中一种就是上篇博文所说的OpacityMask.第二种就是使用 ...

  3. POJ 1002 487-3279

    A - 487-3279 Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  4. TabControl的SelectionChanged事件

    DataGrid作为TabControl控件的TabItem的content元素. 当操作DataGrid的不同cell时,会引发了TabControl的SelectionChanged事件的问题. ...

  5. 爱奇艺招聘uwp开发

    招聘链接:https://job.cnblogs.com/offer/53380/ 工作地点:北京-海淀 工作年限:1年 学历要求:本科 招聘分类:移动开发工程师 工资范围:面议 职位要求 1.扎实的 ...

  6. 微软职位内部推荐-Software Development Engineer 2

    微软近期Open的职位: SDE II Organization Summary: Engineering, Customer interactions & Online (ECO) is l ...

  7. Apache Thrift

    Baidu Thrift  Google Thrift Apache Thrift - 可伸缩的跨语言服务开发框架

  8. 如何在 kernel 和 hal 层读取同一个标志

    很多时候我们需要从 HAL 层(Hardware Abstract Layer)传一个标志给 kernel 层.一般这种传递是不能直接通过定义全局变量来实现的. 此时可以通过读写文件来实现该标志. 譬 ...

  9. 通过自己技能把某个网站的ppt全部下载下来的过程

    1.该网站的ppt链接全部都在页面上,用正则手动提取所有链接,放在指定位置的,以txt形式保存,格式如下 2.写个java文件处理一下,如下: package platform; import jav ...

  10. windows 7 安装 scrapy

    基于64位 win7 系统 先到 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载四个 wheel 文件: 1. lxml-3.4.4-cp27-none-w ...