CSAIndividual.py

 import numpy as np
import ObjFunction class CSAIndividual: '''
individual of clone selection algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for clone selection algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

CSA.py

 import numpy as np
from CSAIndividual import CSAIndividual
import random
import copy
import matplotlib.pyplot as plt class CloneSelectionAlgorithm: '''
the class for clone selection algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[beta, pm, alpha_max, alpha_min]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = CSAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the clone selection algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
tmpPop = self.reproduction()
tmpPop = self.mutation(tmpPop)
self.selection(tmpPop)
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def reproduction(self):
'''
reproduction
'''
tmpPop = []
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(0, nc):
ind = copy.deepcopy(self.population[i])
tmpPop.append(ind)
return tmpPop def mutation(self, tmpPop):
'''
hypermutation
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(1, nc):
rnd = np.random.random(1)
if rnd < self.params[0]:
# alpha = self.params[
# 2] + self.t * (self.params[3] - self.params[2]) / self.MAXGEN
delta = self.params[2] + self.t * \
(self.params[3] - self.params[3]) / self.MAXGEN
tmpPop[i * nc + j].chrom += np.random.normal(0.0, delta, self.vardim)
# tmpPop[i * nc + j].chrom += alpha * np.random.random(
# self.vardim) * (self.best.chrom - tmpPop[i * nc +
# j].chrom)
for k in xrange(0, self.vardim):
if tmpPop[i * nc + j].chrom[k] < self.bound[0, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[0, k]
if tmpPop[i * nc + j].chrom[k] > self.bound[1, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[1, k]
tmpPop[i * nc + j].calculateFitness()
return tmpPop def selection(self, tmpPop):
'''
re-selection
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
best = 0.0
bestIndex = -1
for j in xrange(0, nc):
if tmpPop[i * nc + j].fitness > best:
best = tmpPop[i * nc + j].fitness
bestIndex = i * nc + j
if self.fitness[i] < best:
self.population[i] = copy.deepcopy(tmpPop[bestIndex])
self.fitness[i] = best def printResult(self):
'''
plot the result of clone selection algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Clone selection algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
csa = CSA(50, 25, bound, 500, [0.3, 0.4, 5, 0.1])
csa.solve()

ObjFunction见简单遗传算法-python实现

克隆选择算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 2014 Super Training #1 B Fix 状压DP

    原题: HDU 3362 http://acm.hdu.edu.cn/showproblem.php?pid=3362 开始准备贪心搞,结果发现太难了,一直都没做出来.后来才知道要用状压DP. 题意: ...

  2. 最严谨的校验email地址的正则表达式

    通用 (?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0 ...

  3. bootstrap学习总结-css样式设计(二)

    首先,很感谢各位园友对我的支持,关于bootstrap的学习总结,我会持续更新,如果有写的不对的地方,麻烦各位给我指正出来哈.关于上篇文章,固定布局和流式布局很关键,如果还不太清楚的可以再看看我写的h ...

  4. View (五)自定义View的实现方法

    一些接触Android不久的朋友对自定义View都有一丝畏惧感,总感觉这是一个比较高级的技术,但其实自定义View并不复杂,有时候只需要简单几行代码就可以完成了. 如果说要按类型来划分的话,自定义Vi ...

  5. Studio 从入门到精通 (一)

    目标:Android Studio新手–>下载安装配置–>零基础入门–>基本使用–>调试技能–>构建项目基础–>使用AS应对常规应用开发 AS简介 经过2年时间的研 ...

  6. Android service ( 二) 远程服务

    通常每个应用程序都在它自己的进程内运行,但有时需要在进程间传递对象,你可以通过应用程序UI的方式写个运行在一个不同的进程中的service.在android平台中,一个进程通常不能访问其他进程中的内存 ...

  7. homepage左边的导航菜单怎么做的?

    homepage左边的导航菜单怎么做的? 为啥只在homepage页面写了一个div 然后用一个homepage.js来填充这个div  然后用一个外部容器ID作为homepage.js的参数

  8. trac项目管理平台

    本文来自百科,由于是非Python开发者,所以仅为了拓宽知识面 1软件介绍 Trac是一个为软件开发项目需要而集成了Wiki和问题跟踪管理系统的应用平台,是一个开源软件应用.Trac以简单的方式建立了 ...

  9. java中从1970-1-1到当前时间之间的毫秒数转换为oracle date

    java中System.currentTimeMillis()取到的是从1970-01-01 00:00:00.000到当前时间的毫秒数,一个long类型的值. 现在oracle数据库中某表中存取的是 ...

  10. [iOS翻译]《iOS7 by Tutorials》系列:在Xcode 5里使用单元测试(下)

    4.测试失败的调试 是时候追踪之前测试失败的问题了.打开GameBoard.m,找到cellStateAtColumn:andRow: 和 setCellState:forColumn:andRow: ...