取(2堆)石子游戏

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1730    Accepted Submission(s): 1049

Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。如果你胜,你第1次怎样取子? 
 
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,且a<=b。a=b=0退出。
 
Output
输出也有若干行,如果最后你是败者,则为0,反之,输出1,并输出使你胜的你第1次取石子后剩下的两堆石子的数量x,y,x<=y。如果在任意的一堆中取走石子能胜同时在两堆中同时取走相同数量的石子也能胜,先输出取走相同数量的石子的情况.
 
Sample Input
1 2
5 8
4 7
2 2
0 0
 
Sample Output
0
1
4 7
3 5
0
1
0 0
1 2
 
如果(a - b) * gold == b则满足先手必败,其中gold = ( sqrt(5) + 1) ) / 2 = 1.618
输出时先看是否能同时取相同数量的石子,即差值保持不变
还有就是枚举差值,差值最小为1,最大为m-1,枚举满足这个差值的a和b,
如果a == n则可以拿m使它成为b,
如果a == m,这种可能不会存在,因为b就比最大的大了,
如果b == n,则可以拿m使它成为a,
如果b == m,则可以拿n,使他成为a
 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std; int main()
{
int n,m;
while(scanf("%d%d", &n, &m) != EOF)
{
if(n == && m == )
break;
if(n > m)
{
swap(n, m);
}
double gold = (sqrt() + )/;
int c = gold * (m - n);
int a,b;
if(c == n)
{
printf("0\n");
}
else
{
printf("1\n");
printf("%d %d\n", c, c + m - n);
for(int i = ; i <= m; i++)
{
a = i * gold;
if(a == c)
continue;
b = a + i;
if(a == n)
{
printf("%d %d\n", a,b);
}
else if(b == n)
{
printf("%d %d\n",a, b);
}
else if(b == m)
{
printf("%d %d\n", a, b);
}
}
}
}
return ;
}
 

HD 2177(威佐夫博弈 入门)的更多相关文章

  1. hdu 2177 威佐夫博弈变形

    取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  3. HDU 2177 取(2堆)石子游戏 (威佐夫博弈)

    题目思路:威佐夫博弈: 当当前局面[a,b]为奇异局时直接输出0 否则: 1.若a==b,输出(0 0): 2.将a,b不停减一,看能否得到奇异局,若有则输出: 3.由于 ak=q*k(q为黄金分割数 ...

  4. 【 HDU 2177 】取(2堆)石子游戏 (威佐夫博弈)

    BUPT2017 wintertraining(15) #5C hdu2177 题意 两个人轮流取石子,可以取一堆的任意非负整数个或两堆取相同个,先取完的输. 给定若干组数据:a,b表示两堆的石子数量 ...

  5. HDU 2177 —— (威佐夫博弈)

    威佐夫博弈奇异态(必败态)的条件是a[k]=[k*(sqrt(5.0)+1.0)/2.0].暴力找出必败态即可. 代码如下: #include <stdio.h> #include < ...

  6. 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)

    博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ...

  7. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  8. HDU2177取(2堆)石子游戏---(威佐夫博弈)

    http://acm.hdu.edu.cn/showproblem.php?pid=2177 取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    M ...

  9. 【hdu5973】高精度威佐夫博弈

    题意:输入a, b表示两堆石头数目,威佐夫博弈,问:先手胜负? a, b <= 1e100. 高精度.当a > b时, a = (a-b)*黄金分割比 时是先手败状态.因为a, b < ...

随机推荐

  1. MVC4 WebAPI POST数据问题

    api [HttpPost] public string PostAvartos(Test model) { if (model != null) { LoggerHelper.WriteInfo(m ...

  2. Google play billing(Google play 内支付)

    准备工作 1. 通过Android SDK Manager下载extras中的Google Play services和Google Play Billing Library两个包. 2. 把下载的. ...

  3. Linux 进程通信(共享内存区)

    共享内存是由内核出于在多个进程间交换信息的目的而留出的一块内存区(段). 如果段的权限设置恰当,每个要访问该段内存的进程都可以把它映像到自己的私有地址空间中. 如果一个进程更新了段中的数据,其他进程也 ...

  4. C# == equals 本质理解

    using System; using System.Diagnostics; using System.Text; using System.Collections; using System.Co ...

  5. LUA GC 简单测试

    function table.count(t) if type(t) ~= "table" then assert(false) return end for k, _ in pa ...

  6. Git基础 - git blame

    当想知道一段代码历史上有哪些人修改时,可以使用git blame查看,正如其名,当你看到那段让你抓狂的代码时,一定想找出是谁写的来一顿blame吧 : ) 使用方法 icebug@localhost: ...

  7. log4j+logback+slf4j+commons-logging的关系与调试(转)

    log4j+logback+slf4j+commons-logging的关系与调试 从Log4j迁移到LogBack的理由 http://www.tuicool.com/articles/beeeYv ...

  8. JS 之DOM对象(2)

    http://www.cnblogs.com/zourong/p/4792394.html 这篇文件介绍了DOM1中的一些属性和方法,下面的内容主要介绍DOM2和DOM3中新增的内容. 框架的变化 框 ...

  9. PagerIndicator主题样式修改

    默认的黑色好丑 所以大家需要动手改造一下, 1 打开 Manifest.xml <activity android:name="com.zb.zhihuianyang.MainActi ...

  10. matlab批量合并txt文件

    1: %% merge.m 2: %%%%Main程序%%%%%% 3: %%%%%% 4: %%%%%%本程序合并完各个子文件夹中的txt到主文件目录下,并且合并的文件以子文件夹名字命名 5: %% ...