传送门:GTY's birthday gift

题意:GTY的朋友ZZF的生日要来了,GTY问他的基友送什么礼物比较好,他的一个基友说送一个可重集吧!于是GTY找到了一个可重集S,GTY能使用神犇魔法k次,每次可以向可重集中加入一个数 a+b(a,b∈S),现在GTY想最大化可重集的和,这个工作就交给你了。 注:可重集是指可以包含多个相同元素的集合

分析:想要和最大,那么每次必定从集合里面拿出最大的两个出来相加,然后k次后面就类似斐波那契数列了。

由斐波那契数列公式知:Fn=Fn-1+Fn-2,求和公式有Sn=Sn-1+Fn.因此用这两个公式构造矩阵,进行矩阵快速幂。

Sn-1    | 1 1 0|   Sn

Fn   * | 0 1 1| =Fn+1

Fn-1    | 0 1 0|   Fn

然后ans=(Sn+(sum-a[n-1]-a[n-2]))%mod(sum为原集合总和,然后减去最大的两个,加上k次后的序列之和(即斐波那契数列和))。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 10000007
#define inf 0x3f3f3f3f
#define N 40010
#define clr(a) (memset(a,0,sizeof(a)))
using namespace std;
struct matrix
{
LL m[][];
};
LL a[];
matrix mult(matrix a,matrix b)
{
matrix c;
memset(c.m,,sizeof(c.m));
for(int i=;i<;i++)
for(int j=;j<;j++)
{
if(a.m[i][j]==)continue;
for(int k=;k<;k++)
{
if(b.m[j][k]==)continue;
c.m[i][k]+=a.m[i][j]*b.m[j][k]%mod;
c.m[i][k]%=mod;
}
}
return c;
}
matrix quickmod(matrix a,int n)
{
matrix temp;
memset(temp.m,,sizeof(temp.m));
for(int i=;i<=;i++)temp.m[i][i]=;
while(n)
{
if(n&)temp=mult(temp,a);
a=mult(a,a);
n/=;
}
return temp;
}
int main()
{
LL n,k;
while(scanf("%I64d%I64d",&n,&k)>)
{
LL sum=;
for(int i=;i<n;i++)scanf("%I64d",&a[i]),sum+=a[i];
sort(a,a+n);
matrix ans;
ans.m[][]=;ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;ans.m[][]=;
ans=quickmod(ans,k+);
printf("%I64d\n",(1LL*ans.m[][]*a[n-]+1LL*ans.m[][]*a[n-]+1LL*ans.m[][]*a[n-]+sum-(a[n-]+a[n-]))%mod);
}
}

hdu5171(矩阵快速幂)的更多相关文章

  1. HDU5171 矩阵快速幂

    题目描述:http://acm.hdu.edu.cn/showproblem.php?pid=5171 算法: 可以先将数组a[]排序,然后序列 a1 , a2 , … , an 即为有序序列,则第一 ...

  2. BZOJ4547 Hdu5171 小奇的集合 【矩阵快速幂优化递推】

    BZOJ4547 Hdu5171 小奇的集合 Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大值.(数据保证这个 ...

  3. HDU5171 GTY's birthday gift —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5171 GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others)  ...

  4. HDU 5171 GTY's birthday gift 矩阵快速幂

    GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  5. BC#29A:GTY's math problem(math) B:GTY's birthday gift(矩阵快速幂)

    A: HDU5170 这题让比较a^b与c^d的大小.1<=a,b,c,d<=1000. 显然这题没法直接做,要利用对数来求,但是在math库中有关的对数函数返回的都是浮点数,所以这又要涉 ...

  6. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  7. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  8. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  9. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

随机推荐

  1. SwifThumb.com 第一家Swift开发人员论坛 QQ群 343549891

     官方QQ群2: 兴许会有app出来让大家随时地学习Swift并在线交流~ watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvQW5ld2N6cw==/font ...

  2. android 打包 /${zipalign}&quot; error=2, No such file or directory

    当我更新完android L proview之后我的打包出问题了,报错/${zipalign}" error=2, No such file or directory 排查了一下午才知道 近 ...

  3. 关于new enhancement的一些知识

    关于new enhancement sap源程序里也给我们留了很多. 以下例句point .section.spot说明这些知识点. 1.不管是point还是section 都是基于spot的,spo ...

  4. HttpWebRequest 基础连接已经关闭: 接收时发生错误

    HttpWebRequest request = null; Stream webStream = null; HttpWebResponse response = null; StreamReade ...

  5. window.name 跨域

    跨域的由来 JavaScript出于安全方面的考虑,不允许跨域调用其他页面的对象.但是我们常常会遇到无法避免跨域的情况,如普通文章站点(article.xxx.com)需要评论,而评论站点却在chea ...

  6. android——写xml

    在PersonService的基础上,加上savePersons(·····),这时的PersonService为: package com.njupt.xml; import java.io.Fil ...

  7. 【小白的java成长系列】——javakeyword

    准备出一个系列的内容啦,今天就从keyword開始说起吧~ 类型 keyword 说明 keyword 说明 訪问控制权限 public 公共的.公开的. protected 受保护的.用来修饰属性或 ...

  8. javascript属性一览

    getElementsByTagName() 方法可返回带有指定标签名的对象的集合. getElementsByName() 方法可返回带有指定名称的对象的集合. getAttribute() 方法返 ...

  9. Swift - 将String类型的数字转换成数字类型

    Swift中,如果要把字符串转换成数字类型(比如整型,浮点型等).可以先转成NSString类型,让后再转. 1 2 3 4 //将文本框中的值转换成数字 var i = (tf1.text as N ...

  10. vs2005及以上版本的程序分发问题

    我们使用vs2005及以上版本编译的应用程序(C/C++),在客户机器运行时,会出现: “由于应用程序的配置不正确,应用程序未能启动,重新安装应用程序可能会纠正这个问题” 那么,我们怎么解决这个问题呢 ...