Problem Description
The Nazca Lines are a series of ancient geoglyphs located in the Nazca Desert in southern Peru. They were designated as a UNESCO World Heritage Site in 1994. The high, arid plateau stretches more than 80 kilometres (50 mi) between the towns of Nazca and Palpa on the Pampas de Jumana about 400 km south of Lima. Although some local geoglyphs resemble Paracas motifs, scholars believe the Nazca Lines were created by the Nazca culture between 400 and 650 AD.[1] The hundreds of individual figures range in complexity from simple lines to stylized hummingbirds, spiders, monkeys, fish, sharks, orcas, llamas, and lizards.

Above is the description of Nazca Lines from Wikipedia. Recently scientists found out that those lines form many crosses. Do those crosses have something to do with the Christian religion? Scientists are curious about this. But at first, they want to figure out how many crosses are there. So they took a huge picture of Nazca area from the satellite, and they need you to write a program to count the crosses in the picture.

To simplify the problem, we assume that the picture is an N*N matrix made up of 'o' and '#', and some '#' can form a cross. Here we call three or more consecutive '#' (horizontal or vertical) as a "segment".

The definition of a cross of width M is like this:

1) It's made up of a horizontal segment of length M and a vertical segment of length M.

2) The horizontal segment and the vertical segment overlap at their centers.

3) A cross must not have any adjacent '#'.

4) A cross's width is definitely odd and at least 3, so the above mentioned "centers" can't be ambiguous.

For example, there is a cross of width 3 in figure 1 and there are no cross in figure 2 ,3 and 4.

You may think you find a cross in the top 3 lines in figure 2.But it's not true because the cross you find has a adjacent '#' in the 4th line, so it can't be called a "cross". There is no cross in figure 3 and figure 4 because of the same reason.

 
Input
There are several test cases.

In each test case:

The First line is a integer N, meaning that the picture is a N * N matrix ( 3<=N<=50) .

Next N line is the matrix.

The input end with N = 0

 
Output
For each test case, output the number of crosses you find in a line.

 
Sample Input
4
oo#o
o###
oo#o
ooo#
4
oo#o
o###
oo#o
oo#o
5
oo#oo
oo#oo
#####
oo#oo
oo##o
6
ooo#oo
ooo##o
o#####
ooo#oo
ooo#oo
oooooo
0
 
Sample Output
1
0
0
0
#include<stdio.h>
int n,sk,hk,s,h,stakH[1000],stakS[1000],right,lift,up,dow,zxloct;
char map[105][105];
int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}}; void DFS(int i,int j)
{
int e;
map[i][j]='o';
if(stakS[s]==j)
dow++;
for(e=0;e<4;e++)
if(e<2)
{
if(i+dir[e][0]>=0&&i+dir[e][0]<n&&j>=0&&j<n)
if(map[i+dir[e][0]][j]=='#')
{
sk++;
if(j!=stakS[s])
stakS[++s]=j;
DFS(i+dir[e][0],j+dir[e][1]);
}
}
else
{
if(i>=0&&i<n&&j+dir[e][1]>=0&&j+dir[e][1]<n)
if(map[i][j+dir[e][1]]=='#')
{
hk++;
if(e==2)
right++;
else
lift++;
if(i!=stakH[h])
stakH[++h]=i;
if(zxloct==-1)
{
zxloct=i; dow--;
} DFS(i,j+dir[e][1]);
}
}
if(zxloct==-1)
{
dow--;up++;
}
}
int main()
{
int i,j,k;
while(scanf("%d",&n)==1&&n)
{
k=0;getchar();
for(i=0;i<n;i++)
{
scanf("%s",map[i]);
getchar();
}
stakH[0]=-1;
stakS[0]=-1;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(map[i][j]=='#')
{
hk=s=h=0;
right=lift=0;
up=dow=0;
zxloct=-1;
sk=1;stakS[++s]=j;
DFS(i,j);
if(s==1&&h==1&&sk%2==1&&hk%2==0&&hk>0&&sk>1&&right==lift&&up==dow&&lift!=0&&up!=0)
k++;
} printf("%d\n",k);
}
}

hdu4414(DFS 找十字架数量)的更多相关文章

  1. CodeForces - 103B(思维+dfs找环)

    题意 https://vjudge.net/problem/CodeForces-103B 很久很久以前的一天,一位美男子来到海边,海上狂风大作.美男子希望在海中找到美人鱼 ,但是很不幸他只找到了章鱼 ...

  2. # 「银联初赛第一场」自学图论的码队弟弟(dfs找环+巧解n个二元一次方程)

    「银联初赛第一场」自学图论的码队弟弟(dfs找环+巧解n个二元一次方程) 题链 题意:n条边n个节点的连通图,边权为两个节点的权值之和,没有「自环」或「重边」,给出的图中有且只有一个包括奇数个结点的环 ...

  3. CodeForces 711D Directed Roads (DFS找环+组合数)

    <题目链接> 题目大意: 给定一个$n$条边,$n$个点的图,每个点只有一条出边(初始状态),现在能够任意对图上的边进行翻转,问你能够使得该有向图不出先环的方案数有多少种. 解题分析: 很 ...

  4. dfs找負環

    某些無良出題人可能會卡bfs找負環,所以要用dfs 核心代碼(以jzoj5173為例): #include<bits/stdc++.h> using namespace std; #def ...

  5. leetcode-200-岛屿的个数(dfs找所有的连通分量)

    题目描述: 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 ...

  6. Codeforces Beta Round #87 (Div. 2 Only)-Party(DFS找树的深度)

    A company has n employees numbered from 1 to n. Each employee either has no immediate manager or exa ...

  7. HDU 4665 Unshuffle DFS找一个可行解

    每层找一对相等的整数,分别放在两个不同的串中. 参考了学弟的解法,果断觉得自己老了…… #include <cstdio> #include <cstring> #includ ...

  8. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  9. HDU 1242 dFS 找目标最短路

    //多个起点,要最短得目标,不妨倒过来从目标出发,去找最近的点更新!!!!!!递归时思路要清楚 #include<iostream> #include<cstring> usi ...

随机推荐

  1. js isArray小结

    原文:[转载]js isArray小结 在日常开发中,我们经常需要判断某个对象是否是数组类型的,在js中检测对象类型的常见的方法有几种: 1.typeof操作符.对于Function.String.N ...

  2. [置顶] Spring中DI设置器注入

    Java的反射机制可以说是在Spring中发挥的淋漓尽致,下面要看的代码就是通过反射机制来实现向一个类注入其实际依赖的类型,这个过程的实现会交由Spring容器来帮我们完成. JavaBean中针对属 ...

  3. Swift # 柯里化函数

    前言 此次文章,讲述的是Swift的一个新特性(柯里化函数),可能很多iOS开发人员是第一次听这个词汇,包括我自己也是,自己也用了几天时间才总结出来,希望能帮助到各位咯,个人感觉偏向有开发经验的码友, ...

  4. 我的MYSQL学习心得(八)

    原文:我的MYSQL学习心得(八) 我的MYSQL学习心得(八) 我的MYSQL学习心得(一) 我的MYSQL学习心得(二) 我的MYSQL学习心得(三) 我的MYSQL学习心得(四) 我的MYSQL ...

  5. java 集装箱 arraylist 用法

    1. ArrayList概述: ArrayList 是一个数组队列.相当于 动态数组. 与Java中的数组相比.它的容量能动态增长.它继承于AbstractList.实现了List, RandomAc ...

  6. hdu 4893 Wow! Such Sequence!

    http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d - "add" 2 l r - "query sum ...

  7. POJ 3047 Bovine Birthday 日期定周求 泽勒公式

    标题来源:POJ 3047 Bovine Birthday 意甲冠军:.. . 思考:式 适合于1582年(中国明朝万历十年)10月15日之后的情形 公式 w = y + y/4 + c/4 - 2* ...

  8. 代理模式与Android

    代理模式(Proxy) 一.   什么是代理模式 先来看看官方的说法,代理模式就是为其它对象提供一种代理,以控制对这个对象的訪问. 看来这个官方的说法的确有点官方,看了还是让人感觉不点不知所措,还是不 ...

  9. Java判断当前用户数及当前登录用户数工具类-session原理

    JavaWeb开发中,有时会遇到统计或管理用户登录数或者当前在线多少用户,分别都是谁的情况.当然,实现途径多种多样.下面列举一下通过session实现的一种统计. public class MySes ...

  10. 逗比学树莓派之GPIO

           wiringPi适合那些具有C语言基础,在接触树莓派之前已经接触过单片机或者嵌入式开发的人群.wiringPi的API函数和arduino很相似,这也使得它广受欢迎.作者给出了大量的说明 ...