HDU2767 Proving Equivalences(加边变为强联通图)
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10665 Accepted Submission(s): 3606
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
4 0
3 2
1 2
1 3
2
题解:题目问你最少加多少遍使得图中的任意两点之间乐意互相到达。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int,int>
#define pil pair<int,ll>
#define fi first
#define se second
#define mkp make_pair
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define PI acos(-1.0)
const int INF=0x3f3f3f3f;
const ll inf=0x3f3f3f3f3f3f3f3fll;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;char ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
const int maxn=;
const int maxm=;
vector<pii> vec;
int T,n,m,head[maxn],cnt;
int dfn[maxn],lown[maxn],Stack[maxn];
int InStack[maxn],Belong[maxn],Blocks,top,tot;
int ind[maxn],outd[maxn];
struct Edge{
int to,nxt;
} edge[maxm]; void Init()
{
vec.clear();
mem(head,-);mem(dfn,);
mem(ind,);mem(outd,);
Blocks=tot=top=cnt=;
} void AddEdge(int u,int v)
{
edge[cnt].to=v;
edge[cnt].nxt=head[u];
head[u]=cnt++;
} void Tarjan(int u)
{
dfn[u]=lown[u]=++tot;
InStack[u]=;
Stack[top++]=u;
for(int e=head[u];~e;e=edge[e].nxt)
{
int v=edge[e].to;
if(!dfn[v])
{
Tarjan(v);
lown[u]=min(lown[u],lown[v]);
}
else if(InStack[v]&&dfn[v]<lown[u])
lown[u]=dfn[v];
}
if(dfn[u]==lown[u])
{
int t; Blocks++;
do{
t=Stack[--top];
Belong[t]=Blocks;
InStack[t]=;
} while(t!=u);
}
}
void solve()
{
for(int i=;i<=n;++i)
if(!dfn[i]) Tarjan(i);
} int main()
{
T=read();
while(T--)
{
n=read();m=read();
Init();
for(int i=;i<=m;++i)
{
int u,v;
u=read();v=read();
vec.pb(mkp(u,v));
AddEdge(u,v);
}
solve();
if(Blocks==) {puts("");continue;} for(int i=,len=vec.size();i<len;++i)
{
int x=vec[i].fi,y=vec[i].se;
if(Belong[x]!=Belong[y])
outd[Belong[x]]=,ind[Belong[y]]=;
}
int ans,res1=,res2=;
for(int i=;i<=Blocks;++i)
{
if(!ind[i]) ++res1;
if(!outd[i]) ++res2;
}
ans=max(res1,res2); printf("%d\n",ans);
} return ;
}
HDU2767 Proving Equivalences(加边变为强联通图)的更多相关文章
- hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法
点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...
- 【强联通图 | 强联通分量】HDU 1269 迷宫城堡 【Kosaraju或Tarjan算法】
为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明 ...
- HDU2767 Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- hdu2767 Proving Equivalences Tarjan缩点
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- hdu2767 Proving Equivalences --- 强连通
给一个图,问至少加入�多少条有向边能够使图变成强连通的. 原图是有环的,缩点建图,在该DAG图上我们能够发现,要使该图变成强连通图必须连成环 而加入�最少的边连成环,就是把图上入度为0和出度为0的点连 ...
- 判断强联通图中每条边是否只在一个环上(hdu3594)
hdu3594 Cactus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- HDU 4635 多校第四场 1004 强联通
我还有什么好说,还有什么好说...... 我是SBSBSBSBSBSBSBSBSBSBSBSBBSBSBSBSBSBSBSBSBS........................ 题意 思路什么的都不 ...
- POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)
[题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...
- Proving Equivalences(加多少边使其强联通)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- Python字符串类型判断错误
Python里面常用的字符串类型有str和unicode,如果要判断一个对象的类型,最好用basestring,否则可能会判断错误: str1 = "hello" str2 = u ...
- 如何解决UNMOUNTABLE BOOT VALUME
Windows error:UNMOUNTABLE BOOT VALUME 解决方法:Windows 修复工具 chkdsk命令 chkdsk D:/f ps:chkdsk 磁盘名 /f
- 力扣(LeetCode)旋转字符串 个人题解
给定两个字符串, A 和 B. A 的旋转操作就是将 A 最左边的字符移动到最右边. 例如, 若 A = 'abcde',在移动一次之后结果就是'bcdea' .如果在若干次旋转操作之后,A 能变成B ...
- supervisor服务
描述: 遇到各种各样的各种坑, 可以通过python2 的pip安装, 可以通过apt安装, 不支持python3: 如若用apt安装可能会自动启动并且加入开机自启(不保证成功),pip安装一定不会需 ...
- C# UTM坐标和WGS84坐标转换小工具
工具根据:http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html js代码改编 工具源码github:https://github. ...
- 扛把子组final week 1/1 Scrum立会报告+燃尽图 01
此作业的要求参见http://edu.cnblogs.com/campus/nenu/2019fall/homework/10065 一.小组情况 队名:扛把子 组长:孙晓宇 组员:宋晓丽 梁梦瑶 韩 ...
- node.js安装express框架(1)
一.全局安装express 使用express首先确保你的node.js已经安装好了环境变量配置成功,安装了npm或者cnpm 你可以在终端上面输入node -v查看你的node版本号 打开cmd终端 ...
- 23种GoF设计模式的分类
GoF设计模式一共有23个.一般可以按目的和作用范围来进行划分,具体划分方法如下: 第一,这些模式按目的(即完成什么样任务)来划分为创建型.结构型和行为型这三种模式: 创建型:用来创建对象.单例.原型 ...
- 使用scrapy-redis搭建分布式爬虫环境
scrapy-redis简介 scrapy-redis是scrapy框架基于redis数据库的组件,用于scrapy项目的分布式开发和部署. 有如下特征: 分布式爬取 您可以启动多个spider工 ...
- 使用selenium模拟登陆新浪微博
1.selenium基本使用 1.selenium安装及基本操作 selenium是一个自动化测试工具,它支持各种浏览器,包括Chrome,Safari,Firefox等主流界面浏览器驱动,也包括Ph ...