Machine Learning in Action ---- kNN
------------恢复内容开始------------
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 14 19:29:08 2019 @author: HTING
""" # 导入科学计算包模块
import numpy as np # 导入运算符模块
import operator # =============================================================================
# # 导入 os 模块
# import os
# ============================================================================= # 创建数据集和标签
def createDataSet():
group = np.array([[1.0, 1.1],
[1.0, 1.0],
[0, 0],
[0, 0.1]])
labels = ('A', 'A', 'B', 'B') return group, labels ''' Parameters: inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 训练数据集的label
k - 选择距离最小的k个点 return: sortedClassCount[0][0] - 输入数据的预测分类 ''' # k-近邻算法 def classify0(inX, k): # import dataSet, labels
dataSet, labels = createDataSet() # 计算距离
# A.shape[i] : 第i维的长度
dataSetSize = dataSet.shape[0] # 用tile将输入向量复制成和数据集一样大的矩阵
'''
np.tile(A, reps) :
数组A重复一定次数获得新数组;
A - array, list, tuple, dict, matrix
以及基本数据类型int, string, float以及bool类型;
reps - tuple,list, dict, array, int, bool.
但不可以是float, string, matrix类型; np.tile(A,(m,n)):
数组A重复n次 --> nA; # A重复n次
nA --> m[nA]. # m 维的nA
'''
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat ** 2 '''
In Numpy dimensions are called axes.
The number of axes is rank. '''
sqDistances = sqDiffMat.sum(axis=1)
# sqDistances = np.sum(sqDiffMat, axis=1) distances = sqDistances ** 0.5 # 按距离从小到大排序,并返回相应的索引位置
# A.argsort()[]
sortedDistIndicies = distances.argsort() # 创建一个字典,存储标签和出现次数
classCount = {} # 选择距离最小的k个点
for i in range(k):
'''
for i in range(m,n,z) | range(start, stop, step)
i <--> m -> n-1, step = z;
default: m = 0, z = 1
'''
# 查找样本的标签类型
voteIlabel = labels[sortedDistIndicies[i]] # 在字典中给找到的样本标签类型+1
'''
若不存在voteIlabel,
则字典classCount中生成voteIlabel元素,并使其对应的数字为0 :
: classCount = {voteIlabel:0}
此时classCount.get(voteIlabel,0)作用是检测并生成新元素,括号中的0只用作初始化,之后再无作用;
当字典中有voteIlabel元素时,
classCount.get(voteIlabel,0)作用是返回该元素对应的值
'''
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 # 排序并返回出现次数最多的标签类型
'''
sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list
cmp -- accept function;
key -- accept one element of one function, which is function return ,
the weight to sort;
reverse -- True -> positive order;
False -> negative order; operator.itemgetter()
用于获取对象的哪些维的数据,参数为一些序号。
注,operator.itemgetter函数获取的不是值,而是定义了一个函数,通过该函数作用到对象上才能获取值。
'''
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] 129
130
Machine Learning in Action ---- kNN的更多相关文章
- 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...
- Machine Learning In Action 第二章学习笔记: kNN算法
本文主要记录<Machine Learning In Action>中第二章的内容.书中以两个具体实例来介绍kNN(k nearest neighbors),分别是: 约会对象预测 手写数 ...
- 学习笔记之机器学习实战 (Machine Learning in Action)
机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中 ...
- 《Machine Learning in Action》—— 懂的都懂,不懂的也能懂。非线性支持向量机
说在前面:前几天,公众号不是给大家推送了第二篇关于决策树的文章嘛.阅读过的读者应该会发现,在最后排版已经有点乱套了.真的很抱歉,也不知道咋回事,到了后期Markdown格式文件的内容就解析出现问题了, ...
- 《Machine Learning in Action》—— 白话贝叶斯,“恰瓜群众”应该恰好瓜还是恰坏瓜
<Machine Learning in Action>-- 白话贝叶斯,"恰瓜群众"应该恰好瓜还是恰坏瓜 概率论,可以说是在机器学习当中扮演了一个非常重要的角色了.T ...
- 《Machine Learning in Action》—— 浅谈线性回归的那些事
<Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K ...
- 《Machine Learning in Action》—— Taoye给你讲讲Logistic回归是咋回事
在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕 ...
- K近邻 Python实现 机器学习实战(Machine Learning in Action)
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...
- 【机器学习实战】Machine Learning in Action 代码 视频 项目案例
MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...
随机推荐
- 带你涨姿势的认识一下 Kafka
Kafka 基本概述 什么是 Kafka Kafka 是一个分布式流式平台,它有三个关键能力 订阅发布记录流,它类似于企业中的消息队列 或 企业消息传递系统 以容错的方式存储记录流 实时记录流 Kaf ...
- Salesforce学习之路-developer篇(四)Visualforce结合Reports展示图表
Salesforce作为一款CRM系统,个人觉得最重要的环境便是在于数据的展示和联动,而Salesforce也本身提供了相当强大的功能,Report在展示图表的方面十分强大,前段时间更是宣布以157亿 ...
- AutoCAD 2019 for mac 非常好用的CAD三维设计绘图软件
macOS下用什么cad软件?mac在哪下载cad软件? AutoCAD 2019 for mac 是一款非常好用的CAD三维设计绘图软件,可应用三维建模.CAD.渲染.动画.视觉特效和数字图像. A ...
- cobalt strike批量发送钓鱼邮件
0×01 利用Cobalt strike生成木马 这里我们生成木马可以用cs带的HTA.OFFICE宏.word宏来使目标上线cs,这里以word宏病毒为例子. 首先我们需要制作一个word宏病毒来进 ...
- Cobalt Strike之信息收集、木马钓鱼
System Profiler使用 System Profiler 模块,搜集目标的各类机器信息(操作系统版本,浏览器版本等) Attacks->web drive-by->System ...
- DP题 总结 [更新中]
建设中 ... 预防针 : 本蒟蒻代码风格清奇(⊙﹏⊙)b 一.选学霸 题目描述 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一部分没有,同学们就会抗议.所 ...
- java集合之Stack栈基础
Stack堆栈: 是后进先出(LIFO)的对象堆栈,继承Vector—AbstractList--AbstractCollection类,底层是通过数组实现, boolean empty() 判断堆栈 ...
- go::常用库
sort 排序 var a = [...]string{"abc", "efg", "b", "A", "ee ...
- Redis事务深入解析和使用
作为关系型数据库中一项非常重要的基础功能--事务,在 Redis 中是如何处理并使用的? 1.前言 事务指的是提供一种将多个命令打包,一次性按顺序地执行的机制,并且保证服务器只有在执行完事务中的所有命 ...
- 网络攻防实验任务三_(2)X-Scan通用漏洞扫描实验
首先在宿主机中打开xscan_gui.exe,结果系统直接将它删掉了. 大概是因为开了防火墙的缘故. 于是我在win7虚拟机中运行这个程序. 并且关闭防火墙,在win7中可以运行 我再试了一下win1 ...