题目描述

通常,人们习惯将所有 \(n\) 位二进制串按照字典序排列,例如所有 \(2\) 位二进制串按字典序从小到大排列为:\(00,01,11,10\)。

格雷码(\(Gray Code\))是一种特殊的 \(n\) 位二进制串排列法,它要求相邻的两个二进制串间恰好有一位不同,特别地,第一个串与最后一个串也算作相邻。

所有 \(2\) 位二进制串按格雷码排列的一个例子为:\(00\),\(01\),\(11\),\(10\)。

\(n\) 位格雷码不止一种,下面给出其中一种格雷码的生成算法:

  1. \(1\) 位格雷码由两个 \(1\) 位二进制串组成,顺序为:\(0\),\(1\)。
  2. \(n + 1\) 位格雷码的前 \(2^n\) 个二进制串,可以由依此算法生成的 \(n\) 位格雷码(总共 \(2^n\) 个 \(n\) 位二进制串)按顺序排列,再在每个串前加一个前缀 \(0\) 构成。
  3. \(n + 1\) 位格雷码的后 \(2^n\) 个二进制串,可以由依此算法生成的 \(n\) 位格雷码(总共 \(2^n\) 个 \(n\) 位二进制串)按逆序排列,再在每个串前加一个前缀 \(1\) 构成。

综上,\(n + 1\) 位格雷码,由 \(n\) 位格雷码的 \(2^n\)个二进制串按顺序排列再加前缀 \(0\),和按逆序排列再加前缀 \(1\) 构成,共 \(2^{n+1}\) 个二进制串。另外,对于 \(n\) 位格雷码中的 \(2^n\)个 二进制串,我们按上述算法得到的排列顺序将它们从 \(0 \sim 2^n - 1\) 编号。

按该算法,\(2\)位格雷码可以这样推出:

  1. 已知 \(1\) 位格雷码为 \(0\),\(1\)。
  2. 前两个格雷码为$ 00$,\(01\)。后两个格雷码为 \(11\),\(10\)。合并得到 \(00\),\(01\),\(11\),\(10\),编号依次为 \(0\sim 3\)。

同理,\(3\) 位格雷码可以这样推出:

  1. 已知 \(2\) 位格雷码为:\(00\),\(01\),\(11\),\(10\)。
  2. 前四个格雷码为:\(000\),\(001\),\(011\),\(010\)。后四个格雷码为:\(110\),\(111\),\(101\),\(100\)。合并得到:\(000\),\(001\),\(011\),\(010\),\(110\),\(111\),\(101\),\(100\),编号依次为 \(0\sim7\)。

现在给出 \(n\),\(k\),请你求出按上述算法生成的 \(n\) 位格雷码中的 \(k\) 号二进制串。

输入格式

仅一行两个整数 \(n\),\(k\),意义见题目描述。

输出格式

仅一行一个 \(n\) 位二进制串表示答案。

输入输出样例

输入 #1

2 3

输出 #1

10

输入 #2

3 5

输出 #2

111

输入 #3

44 1145141919810

输出 #3

00011000111111010000001001001000000001100011

说明/提示

【样例 \(1\) 解释】

\(2\) 位格雷码为:\(00\),\(01\),\(11\),\(10\),编号从 \(0\sim3\),因此 \(3\) 号串是 \(10\)。

【样例 \(2\) 解释】

\(3\) 位格雷码为:\(000\),\(001\),\(011\),\(010\),\(110\),\(111\),\(101\),\(100\),编号从 \(0\sim7\),因此 \(5\) 号串是 \(111\)。

【数据范围】

对于 \(50\%\) 的数据:\(n \leq 10\)

对于 \(80\%\) 的数据:\(k \leq 5 \times 10^6\)

对于 \(95\%\) 的数据:\(k \leq 2^{63} - 1\)

对于 \(100\%\) 的数据:\(1 \leq n \leq 64\), \(0 \leq k \lt 2^n\)

这个题正解据说是位运算,但是似乎也不用这么麻烦。然而我考场上并没有开\(unsigned\) \(long\) \(long\)所以我就没了。

考虑按照题意模拟。按照题意,一个\(n\)位的格雷码是由一个前缀\(0\)或\(1\)加上一个长度为\(n-1\)为的格雷码构成的,所以我们可以考虑类似康托展开的方法。

我们不妨先处理出所有\(2\)的幂。对于我们知道这个长度为\(n\)的格雷码在当前所有长度为\(n\)的格雷码中应该正序排第\(k\)位,则如果\(n\lt 2^{n-1}\)(只有小于是因为编号是从\(0\)开始存的)则当前这一位还放\(0\),转移到\(dfs(n-1,k)\);反之放下一个\(1\),考虑怎么处理逆序。

由于我们已经放下了一个\(1\),所以我们已经整个过滤掉了\(2^{n-1}\)个比它排名靠前的格雷码(因为这些格雷码第一位应该是\(0\)),所以我们最后处理编号的范围是\(2^{n-1}\),所以我们首先要把\(k\)减掉\(2^{n-1}\)。手玩一下可以知道,编号从\(0\)开始存这个事情非常麻烦,所以我们需要把这个数整个向右面移一位,也就是加上\(1\)。

再考虑要求倒序排列。这个很简单,因为这\(2^{n-1}\)个格雷码的编号是\(0\sim2^{n-1}-1\),所以容易知道我们只需要用\(2^{n-1}-(k-2^{n-1}+1)\)即可。(其实手玩一下或者打表找规律也行。)

上代码。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<cmath>
#define int long long
#define rep(i,a,n) for(register int i=a;i<=n;++i)
#define dep(i,n,a) for(register int i=n;i>=a;--i)
using namespace std;
int n;
unsigned long long k;
unsigned long long num[64];
inline int read()
{
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
void write(int x)
{
if(x<0)putchar('-'),x=-x;
if(x==0)return;
write(x/10);
putchar(x%10+'0');
}
void dfs(int step,int k)
{
if(step==0)return;
if(k<num[step-1])
{
putchar('0');
dfs(step-1,k);
}
else
{
putchar('1');
dfs(step-1,num[step-1]-(k-num[step-1]+1));
}
}
signed main()
{
n=read(),k=read();
num[0]=1;
rep(i,1,n-1)num[i]=num[i-1]*2;
dfs(n,k);
return 0;
}

一定注意编号必须从\(0\)存,否则\(unsigned\) \(long\) \(long\)存不下。

2019CSP day1t1 格雷码的更多相关文章

  1. [LeetCode] Gray Code 格雷码

    The gray code is a binary numeral system where two successive values differ in only one bit. Given a ...

  2. BZOJ1081[SCOI2005]超级格雷码

    Description 著名的格雷码是指2n个不同n位二进制数(即0~2n-1,不足n位在前补零)的一个排列,这个排列满足相邻的两个二进制数的n位数字中最多只有一个数字不同(例如003和001就有一个 ...

  3. 格雷码原理与Verilog实现

    格雷码原理 格雷码是一个叫弗兰克*格雷的人在1953年发明的,最初用于通信.格雷码是一种循环二进制码或者叫作反射二进制码.格雷码的特点是从一个数变为相邻的一个数时,只有一个数据位发生跳变,由于这种特点 ...

  4. FPGA学习笔记之格雷码、边沿检测、门控时钟

    一.格雷码 格雷码的优点主要是进位时只有一位跳变,误码率低. 1.二进制转格雷码 我们观察下表: 二进制码 格雷码 00 00 01 01 10 11 11 10 二进制码表示为B[],格雷码表示为G ...

  5. LeetCode:Gray Code(格雷码)

    题目链接 The gray code is a binary numeral system where two successive values differ in only one bit. Gi ...

  6. c++实现gray code(格雷码)

    今天别人问的一道题,强调用分治法实现 =.= 百度了一下格雷码,然后写了一下. 关于格雷码大家看百度的吧,特别详细,贴个图: 代码如下(header_file.h是我自己写的一个头文件,包括常见的ve ...

  7. 产生n位元的所有格雷码

    原文链接:http://blog.csdn.net/beiyeqingteng/article/details/7044471 问题:产生n位元的所有格雷码. 格雷码(Gray Code)是一个数列集 ...

  8. Gray code---hdu5375(格雷码与二进制码,普通dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5375 题意就是:给你一串二进制码,里面可能含有'?'这个既可以表示0又可以表示1, 让我们把这个二进制 ...

  9. HDU 5375 Gray code 格雷码(水题)

    题意:给一个二进制数(包含3种符号:'0'  '1'  '?'  ,问号可随意 ),要求将其转成格雷码,给一个序列a,若转成的格雷码第i位为1,则得分+a[i].求填充问号使得得分最多. 思路:如果了 ...

随机推荐

  1. Vue-CLI项目快速UI布局-element-ui

    0902自我总结 Vue-CLI项目快速UI布局-element-ui 一.element-ui的地址 https://element.eleme.cn/ 二.element-ui的安装 <!- ...

  2. R-plotly|交互式甘特图(Gantt chart)-项目管理/学习计划

    本文首发于“生信补给站”微信公众号,https://mp.weixin.qq.com/s/CGz51qOjFSJ4Wx_qOMzjiw 更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号 ...

  3. (19)ASP.NET Core EF创建模型(包含属性和排除属性、主键、生成的值)

    1.什么是Fluent API? EF中内嵌的约定将POCO类映射到表.但是,有时您无法或不想遵守这些约定,需要将实体映射到约定指示外的其他对象,所以Fluent API和注解都是一种方法,这两种方法 ...

  4. PHP array_replace_recursive

    1.函数的作用:比较键值,递归的替代数组中的元素 2.函数的参数: @params array $array1 @params array $array2 @params array $array3 ...

  5. Java的事件自定义事件学习

    课程设计要做一个游戏,由于对C++不是很熟悉,老师也准许使用java 或者其他的语言,在.net我学过事件,一种委托回调,但是在java 我不是很了解,应该原理都相同吧! 游戏大致是这样的,现在这在写 ...

  6. [Luogu2824] [HEOI2016/TJOI2016]排序

    题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行 ...

  7. Tree 点分治

    题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入输出格式 输入格式: N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是 ...

  8. CentOS6.5下搭建文件共享服务(Samba)

    Samba服务: 本内容为samba服务学习者提供参考 案例描述: 某公司的管理员需要搭建SAMBA服务器,IP地址及允许的访问网段自定义.SAMBA服务器的安全级别为user级,所在工作组为WORK ...

  9. MS09-020 iis6.0提权

    漏洞编号:MS09-020 披露日期: 2009/6/9 受影响的操作系统:Windows 2003 x64 sp1 sp2;XP; 测试系统:windows 2003 x64   上传 执行 iis ...

  10. 百万年薪python之路 -- MySQL数据库之 MySQL行(记录)的操作(一)

    MySQL的行(记录)的操作(一) 1. 增(insert) insert into 表名 value((字段1,字段2...); # 只能增加一行记录 insert into 表名 values(字 ...