面试题四十三:在1~n整数中1出现的次数
方法一:直观来看,遍历1到n,每个数去做%10的循环判断
int Number1_B_1toN( int n){
int sum=0;
for(int i=1;i<=n;i++){
int k=i;
while(k!=0){
if(k%10==1)
sum++;
k/=10;
}
}
return sum;
}
方法二:无需遍历每一个数,只对最大的位数进行分解,就是当前位*高位的数字+当前低位数字范围中,当前位为1的数量
如 32629;当前为6,百位 。32*100+(0到629中百位为1的数量 =100)
对于 n = 2134,要找到从1 ~ 2134这2134个数字中所有1的个数。我们可以对2134进行逐位分析:
(1)在个位上,从1~2130,包含213个10,因此数字1出现了213次,剩下的数字2131、2132、2133、2134中个位数上只有2131包含树脂字1,剩下的都不包含。所以个位数上的数字1的总数为213 + 1 = 214。
(2)在十位上,从1 ~ 2100,包含了21个100,因此数字1出现了21 * 10 = 210次,剩下的数字从2101 ~ 2134,只有2110 ~ 2119这10个数字中十位的数字为1,所以十位上的数字1的总数为210 + 10 = 220。
(3)在百位上,从1 ~ 2000,包含了2个1000,因此数字1出现了2 * 100 = 200次,剩下的数字从2001 ~ 2134,只有2100 ~ 2134这35个数字中的百位的数字为1,所以百位数上数字1的总数为200 + 35= 235。
(4)在千位上,包含了0个10000,因此数字1出现了0 * 1000 = 0次,剩下的数字中只有1000 ~ 1999这1000个数字中的千位的数字为1,所以千位上的数字1的总数为1000。因此从1 ~ 2134这n个数字中,数字出现的总的次数为214 + 220 + 235 +1000 = 1669
int NumberOfDigitOne(int n) {
if( n < 0)
return 0;
int i = 1; //从个位开始,10的1次方级别
int high = n; //
int cnt = 0;
while(high != 0)
{
high = n / pow(10 ,i);//high表示当前位的高位
int temp = n / pow(10, i - 1);
int cur = temp % 10;//cur表示第i位上的值,从1开始计算
int low = n - temp * pow(10, i - 1);//low表示当前位的低位
if(cur < 1)
{
cnt += high * pow(10, i - 1);
// 比如120;i=1;hight=12;那就就有12个10;每个10有1个1,就有12个,在加当前位0,0就达不到1;就12个
}
else if(cur > 1)
{
cnt += (high + 1) * pow(10 ,i - 1);
// 比如125;i=1;hight=12;那就就有12个10;每个10有1个1,就有12个,在加当前位5,1到5有一个1;就13个
}
else
{
cnt += high * pow(10, i - 1);
cnt += (low + 1);
// 比如120;i=1;hight=12;那就就有12个10;每个10有1个1,就有12个,在加当前位0,0就达不到1;就12个
}
i++;
}
return cnt;
}
int pow(int k, int i2) {
k=1;
for(int i=1;i<=i2;i++)
k*=10;
return k;
}
面试题四十三:在1~n整数中1出现的次数的更多相关文章
- 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)
问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...
- 面试题32.从1到n整数中1出现的次数
题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从 1到12这些整数中包含1的数字中1,10,11和12,1一共出现了5次 本题可以直接变量1到n的n个数然后分别计 ...
- 《剑指offer》第四十三题(从1到n整数中1出现的次数)
// 面试题43:从1到n整数中1出现的次数 // 题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如 // 输入12,从1到12这些整数中包含1 的数字有1,10,11和12 ...
- 【面试题032】从1到n整数中1出现的次数
[面试题032]从1到n整数中1出现的次数 题目: 输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数. 例如输入12,从1到12这些整数中包含1的数字有1,10,11和1 ...
- 【剑指offer】面试题32:从1到n整数中1出现的次数
题目: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.A ...
- 《剑指offer》面试题32----从1到n整数中1出现的次数
题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11和12,1一共出现了5次. 解法一:不考虑时间效率的解法(略) ps ...
- 剑指offer-面试题43-1~n整数中1出现的次数-归纳法
/* 题目: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数? 为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没 ...
- 九度OJ 1373 整数中1出现的次数(从1到n整数中1出现的次数)
题目地址:http://ac.jobdu.com/problem.php?pid=1373 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU ...
- 32:从1到n整数中1出现的次数
import java.util.Arrays; /** * 面试题32:从1到n整数中1出现的次数 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数? * 为此他特别数了 ...
- 剑指offer-第五章优化时间和空间效率(从1到n的整数中1出现的次数)
题目:输入一个整数n,从1到n这n个十进制整数中1出现的次数. 思路1:对1到n中的任意一个数i对其进行求余数来判断个位是否为1,然后再求除数,判断十位是否为1.统计出1的个数.然后对1到n用一个循环 ...
随机推荐
- webstom 汉化,激活
1.激活 本地服务器激活: 下载 magnet:?xt=urn:btih:2289E4F8CEB346AC44E54C8C0DA706CC537301AA 得到一个压缩包IntelliJIDEALic ...
- fatal error C1189: #error : This file requires _WIN32_WINNT to be #defined at least to 0x0403. Value 0x0501 or higher is recommended.
说了原因,下面是修改方法,就是在stdafx.h文件中修改相关的定义,修改完后的效果应该如下: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #ifndef WINVER ...
- 禁用rm命令
(1)[root@tf ~]# alias rm='echo do not use rm command'[root@tf ~]# vim /etc/profile alias rm='echo ...
- Python3笔记009 - 2.6 输入和输出
第2章 python语言基础 python语法特点 保留字与标识符 变量 数据类型 运算符 输入和输出 2.6 输入和输出 1.input()函数 name = input("请输入姓名:& ...
- 每日一题 - 剑指 Offer 31. 栈的压入、弹出序列
题目信息 时间: 2019-06-25 题目链接:Leetcode tag:栈 难易程度:中等 题目描述: 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入 ...
- 使用centos8搭建僵尸毁灭工程(PZ)服务器
自从领到了阿里云的ECS服务器后,本着既能熟悉linux操作,又能为喜欢的游戏搭建一个可以和朋友一起联机的服务器(游戏提供自建本地服务器极渣)的想法.作为linux小白的我翻遍了网上的资料,用了五天终 ...
- Python-自动用0补取长度
描述 Python zfill() 方法返回指定长度的字符串,原字符串右对齐,前面填充0. 语法 zfill()方法语法: str.zfill(width) 参数 width -- 指定字符串的长度. ...
- Aspose下载图片
/// <summary> /// 把DataTable数据按照Excel模板导出到Excel /// </summary> /// <param name=" ...
- 从0开始,手把手教你使用React开发答题App
项目演示地址 项目演示地址 项目源码 项目源码 其他版本教程 Vue版本 小程序版本 项目代码结构 前言 React 框架的优雅不言而喻,组件化的编程思想使得React框架开发的项目代码简洁,易懂,但 ...
- 【XCTF】Cat
标签:宽字节.PHP.Django.命令执行 解题过程 目录扫描没有发现任何可疑页面. 测试输入许多域名,均没有反应:输入ip地址得到回显. 猜测为命令执行,尝试使用管道符拼接命令. 测试:|.&am ...