6个冷门但实用的pandas知识点
1 简介
pandas作为开展数据分析的利器,蕴含了与数据处理相关的丰富多样的API,使得我们可以灵活方便地对数据进行各种加工,但很多pandas中的实用方法其实大部分人都是不知道的,今天就来给大家介绍6个不太为人们所所熟知的实用pandas小技巧。
图1
2 6个实用的pandas小知识
2.1 Series与DataFrame的互转
很多时候我们计算过程中产生的结果是Series格式的,而接下来的很多操作尤其是使用链式语法时,需要衔接着传入DataFrame格式的变量,这种时候我们就可以使用到pandas中Series向DataFrame转换的方法:
- 利用to_frame()实现Series转DataFrame
s = pd.Series([0, 1, 2])
# Series转为DataFrame,name参数用于指定转换后的字段名
s = s.to_frame(name='列名')
s
图2
顺便介绍一下单列数据组成的数据框转为Series的方法:
- 利用squeeze()实现单列数据DataFrame转Series
# 只有单列数据的DataFrame转为Series
s.squeeze()
图3
2.2 随机打乱DataFrame的记录行顺序
有时候我们需要对数据框整体的行顺序进行打乱,譬如在训练机器学习模型时,打乱原始数据顺序后取前若干行作为训练集后若干行作为测试集,这在pandas中可以利用sample()方法快捷实现。
sample()方法的本质功能是从原始数据中抽样行记录,默认为不放回抽样,其参数frac用于控制抽样比例,我们将其设置为1则等价于打乱顺序:
df = pd.DataFrame({
'V1': range(5),
'V2': range(5)
})
df.sample(frac=1)
图4
2.3 利用类别型数据减少内存消耗
当我们的数据框中某些列是由少数几种值大量重复形成时,会消耗大量的内存,就像下面的例子一样:
import numpy as np
pool = ['A', 'B', 'C', 'D']
# V1列由ABCD大量重复形成
df = pd.DataFrame({
'V1': np.random.choice(pool, 1000000)
})
# 查看内存使用情况
df.memory_usage(deep=True)
图5
这种时候我们可以使用到pandas数据类型中的类别型来极大程度上减小内存消耗:
df['V1'] = df['V1'].astype('category')
df.memory_usage(deep=True)
图6
可以看到,转换类型之后内存消耗减少了将近98.3%!
2.4 pandas中的object类型陷阱
在日常使用pandas处理数据的过程中,经常会遇到object这种数据类型,很多初学者都会把它视为字符串,事实上object在pandas中可以代表不确定的数据类型,即类型为object的Series中可以混杂着多种数据类型:
s = pd.Series(['111100', '111100', 111100, '111100'])
s
图7
查看类型分布:
s.apply(lambda s: type(s))
图8
这种情况下,如果贸然当作字符串列来处理,对应的无法处理的元素只会变成缺失值而不报错,给我们的分析过程带来隐患:
s.str.replace('00', '11')
图9
这种时候就一定要先转成对应的类型,再执行相应的方法:
s.astype('str').str.replace('00', '11')
图10
2.5 快速判断每一列是否有缺失值
在pandas中我们可以对单个Series查看hanans属性来了解其是否包含缺失值,而结合apply(),我们就可以快速查看整个数据框中哪些列含有缺失值:
df = pd.DataFrame({
'V1': [1, 2, None, 4],
'V2': [1, 2, 3, 4],
'V3': [None, 1, 2, 3]
})
df.apply(lambda s: s.hasnans)
图11
2.6 使用rank()计算排名时的五种策略
在pandas中我们可以利用rank()方法计算某一列数据对应的排名信息,但在rank()中有参数method来控制具体的结果计算策略,有以下5种策略,在具体使用的时候要根据需要灵活选择:
- average
在average策略下,相同数值的元素的排名是其内部排名的均值:
s = pd.Series([1, 2, 2, 2, 3, 4, 4, 5, 6])
s.rank(method='average')
图12
- min
在min策略下,相同元素的排名为其内部排名的最小值:
s.rank(method='min')
图13
- max
max策略与min正好相反,取的是相同元素内部排名的最大值:
s.rank(method='max')
图14
- dense
在dense策略下,相当于对序列去重后进行排名,再将每个元素的排名赋给相同的每个元素,这种方式也是比较贴合实际需求的:
s.rank(method='dense')
图15
- first
在first策略下,当多个元素相同时,会根据这些相同元素在实际Series中的顺序分配排名:
s = pd.Series([2, 2, 2, 1, 3])
s.rank(method='first')
图16
关于pandas还有很多实用的小知识,以后会慢慢给大家不定期分享~欢迎在评论区与我进行讨论
6个冷门但实用的pandas知识点的更多相关文章
- Python数据分析--Pandas知识点(三)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...
- Python数据分析--Pandas知识点(二)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...
- pandas知识点脑图汇总
参考文献: [1]Pandas知识点脑图汇总
- 机器学习-Pandas 知识点汇总(吐血整理)
Pandas是一款适用很广的数据处理的组件,如果将来从事机械学习或者数据分析方面的工作,咱们估计70%的时间都是在跟这个框架打交道.那大家可能就有疑问了,心想这个破玩意儿值得花70%的时间吗?咱不是还 ...
- 这几个冷门却实用的 Python 库,我爱了!
- 盘点 php 里面那些冷门又实用的小技巧
1.实用某个字段索引二维数组 取出一个数组的一个字段的值的数组,我们可以使用 array_column, 这个方法还有另外一个用法,如 array_column($array, null, 'key' ...
- Python数据分析--Pandas知识点(一)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘 1. 重复值的处理 利用drop_duplicates()函数删除数据表中重复多余的记录, 比如删除重复多余的ID. im ...
- Python之Pandas知识点
很多人都分不清Numpy,Scipy,pandas三个库的区别. 在这里简单分别一下: NumPy:数学计算库,以矩阵为基础的数学计算模块,包括基本的四则运行,方程式以及其他方面的计算什么的,纯数学: ...
- pandas知识点汇总
## pandas基础知识汇总 1.时间序列 import pandas as pd import numpy as np import matplotlib.pyplot as plt from d ...
随机推荐
- Java基础一篇过(五)Map这篇就够了
文章更新时间:2020/03/03 一.Map介绍 Map是Java的一个接口,没有继承,以Key--Value的形式来储存元素信息,常用到的有3个子类实现: HashMap 底层数据结构是散列桶(数 ...
- Mac鼠标灵敏度调节
系统的调节到最大还是无法满足你的时候那么你就该看看我接下来的操作了,请看: 查看 首先打开终端,输入一下命令: defaults read -g com.apple.mouse.scaling 此命令 ...
- Windows10上安装MySQL(详细)
一.下载MySQL 1.在浏览器里打开mysql的官网http://www.mysql.com 2.进入页面顶部的"Downloads" 3.下滑页面,打开页面底部的"C ...
- Java源码赏析(六)Java String 三顾
在大致了解了String之后,可能有的读者发现了,我们并没有谈到CharSequence接口. 原因是在这一节,CharSequence要和StringBuilder(Java1.5).StringB ...
- pycharm安装注意
在安装pycharm时,一定要先去官网下载安装python新版. 安装python时候一定要选择自己熟悉的路径 在pycharm创建项目时编译器选择versions/3.8/bin/python3,这 ...
- 2019.7.12 sdfzoier做题统计
lixf_lixf :9 P1981 表达式求值 P1076 寻宝 P1199 三国游戏 P1308 统计单词数 P1190 接水问题 P1158 导弹拦截 P1070 道路游戏 P1069 细胞分裂 ...
- BUU reverse xxor
下载下来的是个elf文件,因为懒得上Linux,直接往IDA里扔, 切到字符串的那个窗口,发现Congratulation!,应该是程序成功执行的表示, 双击,按'x',回车跟入 找到主函数: 1 _ ...
- Logback自定义日志颜色
片段 1 片段 2 LogbackColorful.java package cn.mrxionge.netdemo; import ch.qos.logback.classic.Level; imp ...
- Restful 风格是什么?
1.1 什么是RESTful 1. REST与技术无关,代表的是一种软件架构风格(REST是Representational State Transfer的简称,中文翻译为"表征状态转移&q ...
- Java知识系统回顾整理01基础05控制流程04 for
一.for 比较for和while public class HelloWorld { public static void main(String[] args) { //使用while打印0到4 ...